Energy Efficiency of White LEDs

The energy efficiency of light-emitting diodes (LEDs) is expected to rival the most efficient white light sources by 2010. But how energy efficient are LEDs right now? This fact sheet discusses various aspects of lighting energy efficiency and the rapidly evolving status of white LEDs.

Luminous Efficacy

Energy efficiency of light sources is typically measured in lumens per watt (lm/W), meaning the amount of light produced for each watt of electricity consumed. This is known as luminous efficacy. DOE’s long-term research and development goal calls for white-light LEDs producing 160 lm/W in cost-effective, market-ready systems by 2025. In the meantime, how does the luminous efficacy of today’s white LEDs compare to traditional light sources? Currently, the most efficacious white LEDs can perform similarly to fluorescent lamps. However, there are several important caveats, as explained below.

Color Quality

The most efficacious LEDs have very high correlated color temperatures (CCTs), often above 5000K, producing a “cold” bluish light. However, warm white LEDs (2600K to 3500K) have improved significantly, now approaching the efficacy of CFLs. In addition to warmer appearance, LED color rendering is also improving: leading warm white LEDs are now available with color rendering index (CRI) of 80, equivalent to CFLs.

Driver Losses

Fluorescent and high-intensity discharge (HID) light sources cannot function without a ballast, which provides a starting voltage and limits electrical current to the lamp. Similarly, LEDs require a power supply (commonly called a “driver”). The power supply converts line (AC) power to the appropriate DC voltage (typically between 2 and 4 volts DC for high-brightness LEDs) and current (generally 200-1000 milliamps, mA), and may also include supplementary electronics for dimming and/or color correction control.

Currently available LED drivers are typically about 85% efficient. So LED efficacy should be discounted by 15% to account for the driver. For a rough comparison, the range of luminous efficacies for traditional and LED sources, including ballast and driver losses as applicable, are shown below.

<table>
<thead>
<tr>
<th>Light Source</th>
<th>Typical Luminous Efficacy Range in lm/W (varies depending on wattage and lamp type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incandescent (no ballast)</td>
<td>10-18</td>
</tr>
<tr>
<td>Halogen (no ballast)</td>
<td>15-20</td>
</tr>
<tr>
<td>Compact fluorescent (CFL) (incl. ballast)</td>
<td>35-60</td>
</tr>
<tr>
<td>Linear fluorescent (incl. ballast)</td>
<td>50-100</td>
</tr>
<tr>
<td>Metal halide (incl. ballast)</td>
<td>50-90</td>
</tr>
<tr>
<td>Cool white LED >4000K (incl. driver)</td>
<td>60-92*</td>
</tr>
<tr>
<td>Warm white LED <4000K (incl. driver)</td>
<td>27-54*</td>
</tr>
</tbody>
</table>

*As of Spring 2009

Thermal Effects

The luminous flux figures cited by LED manufacturers are based on an LED junction temperature (Tj) of 25°C. LEDs are tested during manufacturing under conditions that differ from actual operation in a fixture or system. In general, luminous flux is measured under instantaneous operation (perhaps a 20 or 25 millisecond pulse) in open air. Tj will always be higher when operated under constant current in a fixture or system. LEDs in a well-designed luminaire with adequate heat sinking will produce 10%-15% less light than indicated by the “typical luminous flux” rating.
Comparing LEDs to Traditional Light Sources

Energy efficiency proponents are accustomed to comparing light sources on the basis of luminous efficacy. To compare LED sources to CFLs, for example, the most basic analysis should compare lamp-ballast efficacy to LED+driver efficacy in lumens per watt. Data sheets for white LEDs from the leading manufacturers will generally provide “typical” luminous flux in lumens, test current (mA), forward voltage (V), and junction temperature (T_j), usually 25 degrees Celsius. To calculate lm/W, divide lumens by current times voltage. As an example, assume a device with typical flux of 45 lumens, operated at 350 mA and voltage of 3.42 V. The luminous efficacy of the LED source would be:

$$\frac{45 \text{ lumens}}{.35 \text{ amps} \times 3.42 \text{ volts}} = 38 \text{ lm/W}$$

To include typical driver losses, multiply this figure by 85%, resulting in 32 lm/W. Because LED light output is sensitive to temperature, some manufacturers recommend de-rating luminous flux by 10% to account for thermal effects. In this example, accounting for this thermal factor would result in a system efficacy of approximately 29 lm/W. However, actual thermal performance depends on heat sink and fixture design, so this is only a very rough approximation. Accurate measurement can only be accomplished at the luminaire level.

Application Efficiency

Luminous efficacy is an important indicator of energy efficiency, but it doesn’t tell the whole story, particularly with regard to directional light sources.

Due to the directional nature of their light emission, LEDs potentially have higher application efficiency than other light sources in certain lighting applications. Fluorescent and standard “bulb” shaped incandescent lamps emit light in all directions. Much of the light produced by the lamp is lost within the fixture, reabsorbed by the lamp, or escapes from the fixture in a direction that is not useful for the intended application. For many fixture types, including recessed downlights, troffers, and under-cabinet fixtures, it is not uncommon for 40-50% of the total light output of the lamp(s) to be lost before it exits the fixture.

LEDs emit light in a specific direction, reducing the need for reflectors and diffusers that can trap light, so well-designed fixtures, like the undercabinet light shown below, can deliver light more efficiently to the intended location.

About half the lamp’s light output is lost inside the fixture.

The low-profile design of this undercabinet light takes advantage of LED directionality to deliver light where it is needed. Available in 3W (shown), 6W, and 9W models.

For Program Information
on the Web:
www.ssl.energy.gov
DOE sponsors a comprehensive program of SSL research, development, and commercialization.

For Program Information:
Robert Lingard
Pacific Northwest National Laboratory
Phone: (503) 417-7542
E-mail: robert.lingard@pnl.gov

PNNL-SA-50462
June 2009

Printed on 30% post-consumer recycled paper.