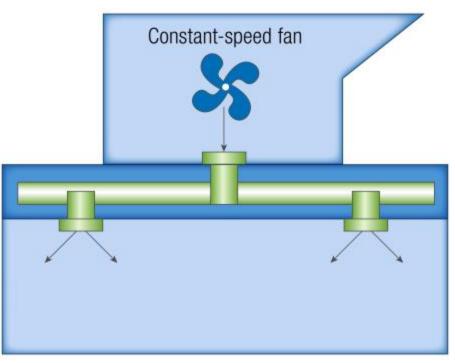
Up On the Roof Recent advances in rooftop unit controls

Jay Stein Executive Vice President, E Source

Cooling Efficiency Workshop

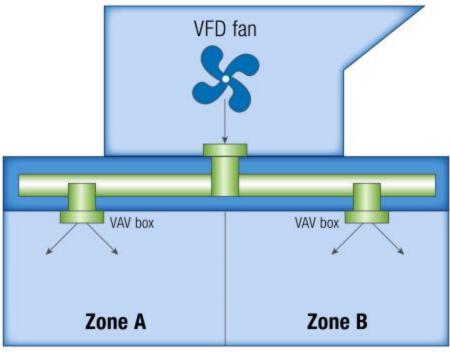
www.esource.com

Wednesday, March 19, 2014

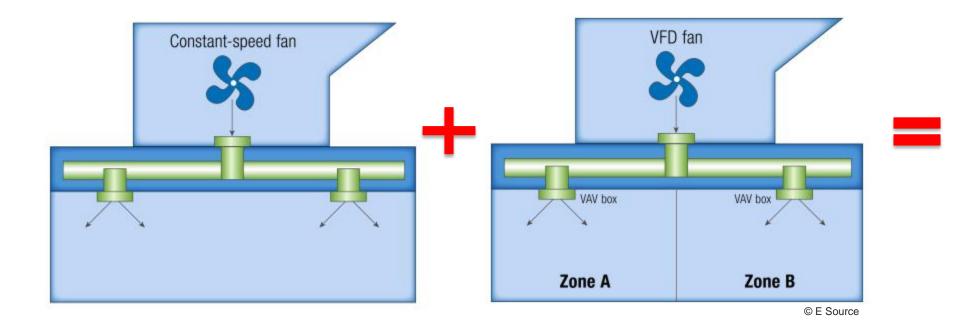

What's So Special About This RTU?

Source: Trane

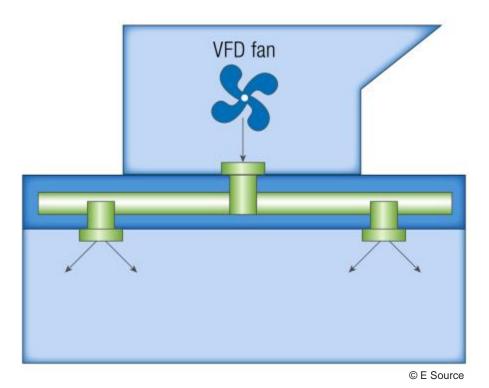
Single-Zone Constant Volume (CV)


- One zone
- Fixed fan speed
- Fan either on or off

© E Source


Multizone Variable Air Volume (VAV)

- Multiple zones
- Variable fan speed
- Fan speed based on duct pressure


© E Source

Combine the Two ...

Single-Zone Variable Air Volume (SZVAV)

- One zone
- Variable fan speed
- Low speed when neither heating nor cooling is called for

Advantages of SZVAV

Reduces energy consumption

- SEER boost 2.5 points
- At least 20% energy savings

Helps compensate for oversizing Improves dehumidification Reduces fan noise

Reduces complexity

Courtesy: Clker.com

Additional Features

- Integrated economizer
- Demand-controlled ventilation
- Variable-speed compressor

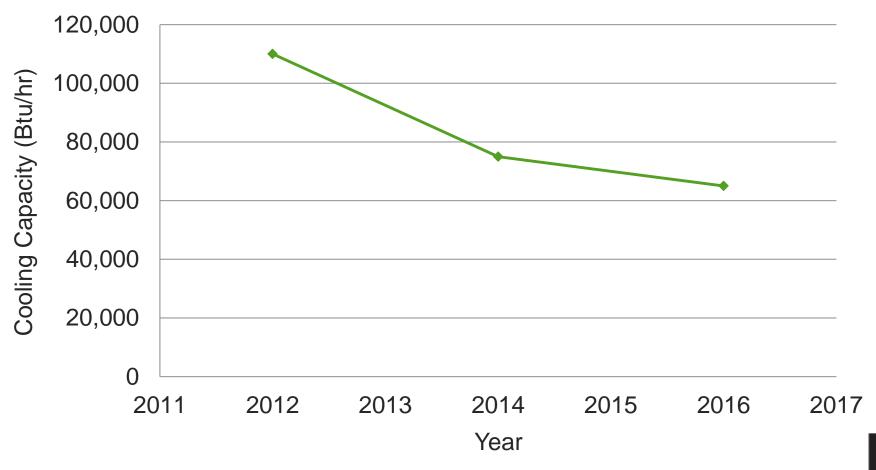
Courtesy: Clker.com

Where Can You Get a SZVAV?

- Aaon
- Carrier
 - Centurion
- Daikin/McQuay
 - Rebel
- Lennox
 - MSAV
- Trane
 - Precedent Plus

York

Courtesy: Daikin/McQuay


Source: Lennox

Size Matters

- Where to use SZVAV:
- Single zone units
- 7.5 tons or larger
 - Occasionally cost-effective as low as 5 tons
- Long run hours
 - 24/7 the best
 - Office hours (M-F, 9-5) are on the bubble
- Oversized
 - The more excess capacity, the greater the savings

Coming Soon to a Building Code Near You

Effective dates for SZVAV required by California Title 24 for DX cooling equipment

What About All Those Existing Units?

Source: Wikimedia Commons

RTU Variable-Frequency Drive Retrofit Devices

Catalyst

Transformative Wave Technologies

Enerfit Enerfit LLC

Source: Transformative Wave Technologies

Digi-RTU Optimizer
<u>Bes-Tech</u> (DTL Controls)

Source: Bes-Tech

Different Strokes for Different Folks

Product	VFD evaporator fan	VFD compressor	VFD type	Damper for coil 2
Catalyst	\checkmark		Indexed	
Enerfit	\checkmark		Continuous	\checkmark
Digi-RTU	\checkmark	\checkmark	Continuous	

Note: VFD = variable-frequency drive.

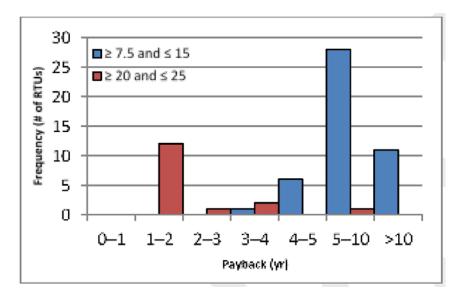
© E Source

Source: Wikimedia Commons

Source: Enerfit

All Provide Additional Features

- Demand-controlled ventilation
- Integrated economizer control
- Web control and monitoring
- Fault detection and diagnostics


They're Not Modest

Product	Annual HVAC energy savings	Simple payback period	Cost
Catalyst	25–40%	2 years	\$4,000 (15-ton)
Enerfit	50–70%	1–3 years	\$4,700 (20-ton)
Digi-RTU	50%	1–4 years	\$600 per ton \$12,000 (20-ton)

© E Source

Finally, from PNNL, a Definitive Study

- Number of rooftop units tested: 66
- Building types: mercantile, office, food sales, healthcare
- Savings varied widely: 22% to 90%
- Average savings: 55%
- Average simple payback period: 3 years

Source: Pacific Northwest National Laboratory

In Addition to Energy Efficiency

Fault Detection and Diagnostics

Unit03 Health Status

Drive Communication	
Drive Fault	
Fan Run	
Fan Belt	
Heating Fail	
Cooling Fail	
Damper Fail	
Space Sensor	
Supply Sensor	
Return Sensor	
OSA Sensor	
CO2 Sensor	
Service Off	

Courtesy: Transformative Wave Technologies

System Monitoring

Jan Star		
	72.0	٩F
	Clear	
The second second		

Scottsdale

7111 E. Mayo Blvd.

Unit	Convoc	Comm	Mada	Health	0.00		Comfort Status		Actual	Actual Cool S/P		Fan	Fan Power	Cooli	ng	Heating		Doturn	OSA	CO2	OSA Volume
Name	Serves	comm	Mode	nealui	occ	Call	Status	remp	Heat S/F	COOL 3/ F	Status	Speeu	FOWER	1	2	1 2	Supply	Return	USA	002	volume
🚺 Unit01	Sales Seafood	1	Θ	4	Θ			71.6 °F	70 °F	73 °F		40 %	0.34 kW	0			80.3 °F	77.5 °F	87.9 °F	446 ppm	
🕦 Unit02	Main Sales Cntr	7	\odot	4	۲			72.3 °F	70 °F	73 °F		40 %	0.33 kW				80.7 °F	77.8 °F	88.7 °F	450 ppm	-
🚺 Unit03	Sales Tapas	1	Θ	4	θ			72.8 °F	70 °F	73 °F		40 %	0.36 kW	0			79.7 °F	76.7 °F	88.0 °F	473 ppm	-
🚺 Unit04	Loading Dock	1	6		۲			70.3 °F	68 °F	71 °F		90 %	1.80 kW				53.0 °F	72.1 °F	84.2 °F	412 ppm	-
🕦 Unit05	Food Prep	1	Θ		θ			71.0 °F	68 °F	71 °F		40 %	0.13 kW	0			82.7 °F	77.8 °F	82.7 °F	392 ppm	-
🚺 Unit06	Checkstands	1	6		۲			70.6 °F	68 °F	73 °F		40 %	0.14 kW				82.8 °F	78.1 °F	80.3 °F	442 ppm	-
🕦 Unit07	Bakery	1	Θ		θ			71.5 °F	68 °F	71 °F		40 %	0.14 kW	0			81.4 °F	77.6 °F	80.6 °F	472 ppm	-
🚺 Unit08	Vestibule	1	\odot	4	۲			74.0 °F	68 °F	71 °F		90 %	0.84 kW				45.2 °F	74.0 °F	82.4 °F	-	-
1 Unit09	Produce	1	Θ		θ			72.3 °F	68 °F	71 °F		90 %	0.46 kW				46.3 °F	76.8 °F	47.6 °F	443 ppm	-

Site Data		Space Humidity	Space Humidity Setpoint		dification Reheat	Dehumidification Su	Dehumidification Fa Speed Setpoint	n Space Dewpoint
OSA Humidity	Unit01	31.3 %RH	50.0 %				80.0 %	39.7 °F
20.5 %RH	Unit02	28.8 %RH	50.0 %	0	0	-	80.0 %	38.1 °F
20.5 %KH	Unit03	35.7 %RH	50.0 %			-	80.0 %	44.7 °F
OSA Dewpoint	Unit04	-	-	-	-	-	-	-
39.4 °F	Unit05	-	-		-	-	-	
	Unit06	34.4 %RH	50.0 %	0	0	55.0 °F	75.0 %	41.3 °F
Space Static	Unit07	34.9 %RH	50.0 %			55.0 °F	75.0 %	42.5 °F
0.02 in/wc	Unit08	-	-	-	-	-	-	-
	Unit09	32.7 %RH	50.0 %			55.0 °F	75.0 %	41.4 °F

Courtesy: Transformative Wave Technologies

?

For More Information

Jay Stein

Executive Vice President, E Source 303-345-9131

jay_stein@esource.com

Have a question? Ask our experts: www.esource.com/question