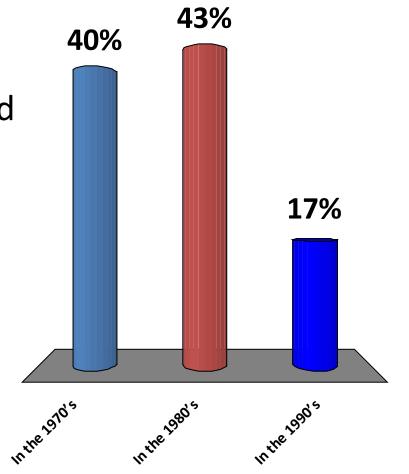
Go Solar!

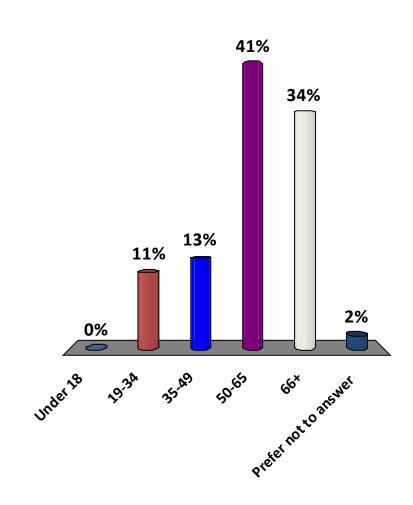
Fort Collins Residential Environmental Program Series (1 April, 2015)

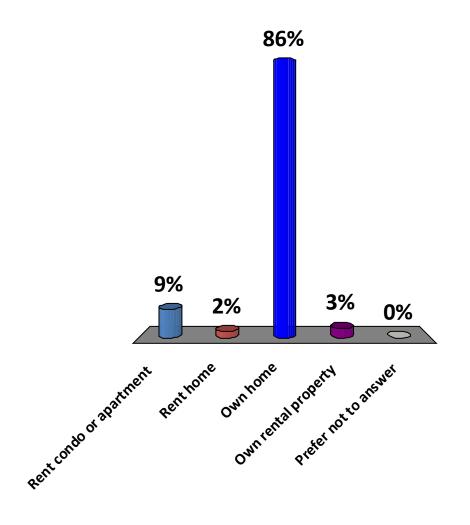
AGENDA


- 7:00 PM Welcome and Intro (Kelsey Doan, Norm Weaver)
- 7:10 PM **Overview of Ft Collins Solar Program**s (Norm Weaver)
- 7:30 PM Update on Riverside Community Solar (Mike Dow)
- 8:00 PM **5 minute break**
 - 8:05 PM **Revive Zero Energy Subdivision** (Paul Norton)
- 8:45 PM Wrap up polling and door prizes

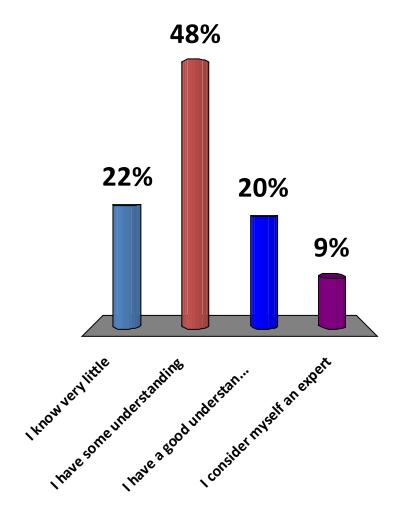
But First ... a warmup question "The Future is so Bright, I gotta Wear Shades!"

This "one hit wonder" popular song (by Timbuk 3) was released


- A. In the 1970's
- B. In the 1980's
- C. In the 1990's


In what age range are you?

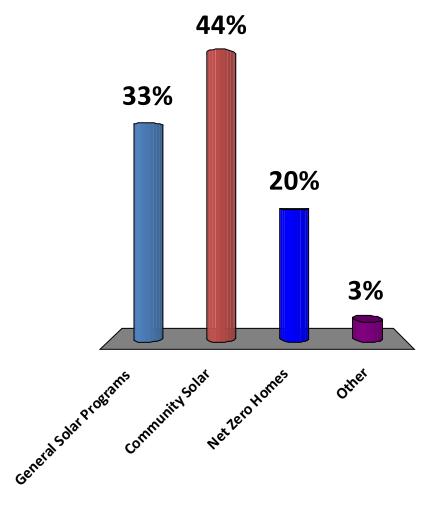
- A. Under 18
- B. 19-34
- C. 35-49
- D. 50-65
- E. 66+
- F. Prefer not to answer


Do you rent or own your home?

- A. Rent condo or apartment
- B. Rent home
- C. Own home
- D. Own rental property
- E. Prefer not to answer

How familiar are you with the presentation topic?

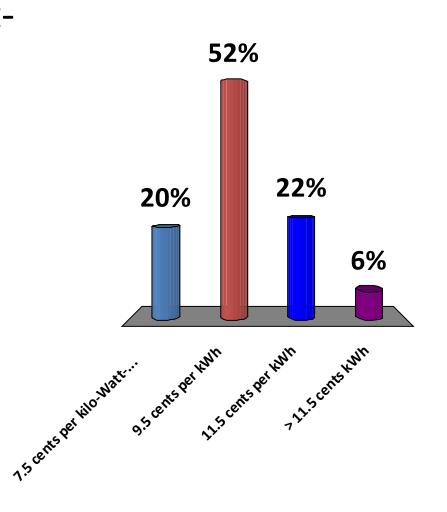
- A. I know very little
- B. I have some understanding
- C. I have a good understanding
- D. I consider myself an expert



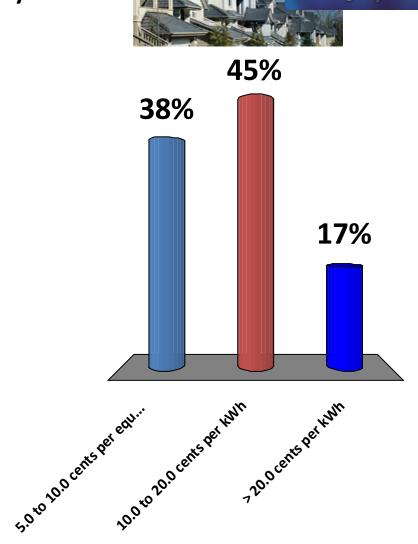
Your Interest Tonight?

I am most interested to learn tonight about

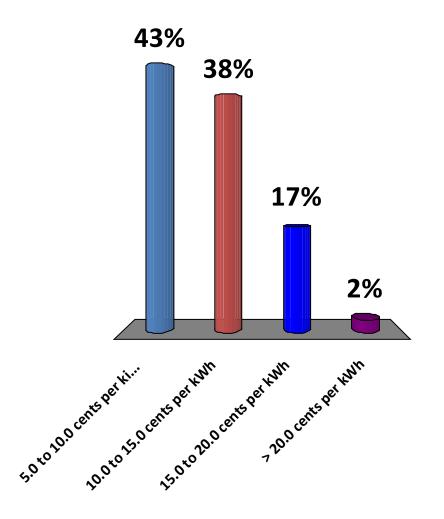
- A. General Solar Programs
- B. Community Solar
- C. Net Zero Homes
- D. Other



The Cost of Energy ...


The average cost of residential electricity in Fort Collins is

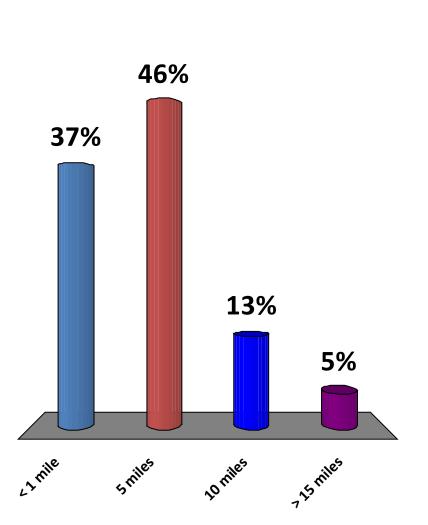
- A. 7.5 cents per kilo-Watthour ("kWh")
- B. 9.5 cents per kWh
- C. 11.5 cents per kWh
- D. > 11.5 cents kWh


- The cost of energy saved... The average cost to a home owner of a saved energy (elec. and nat-gas) through energy efficiency is 45% A 5.0 to 10.0 cents per
- A. 5.0 to 10.0 cents per equiv. kilo-Watt-hour ("kWh")
- B. 10.0 to 20.0 cents per kWh
- C. > 20.0 cents per kWh

- A. 5.0 to 10.0 cents per kilo-Watt-hour ("kWh")
- B. 10.0 to 15.0 cents per kWh
- C. 15.0 to 20.0 cents per kWh
- D. > 20.0 cents per kWh

The Cost of Solar ...

The cost of electricity produced by a residential photovoltaic ("PV") solar system averaged over 25 years is



Bonus Question ... The distance to the nearest installed PV solar system larger than 25kW is

- A. <1 mile
- B. 5 miles
- C. 10 miles
- D. > 15 miles

(a typical residential PV system is 3kW)

Overview of Fort Collins Solar Programs

- Efficiency First "Efficiency Works"
- Home Eff. Loan Program ("on-bill financing")
- Residential and Commercial PV Rebates
- Community Solar
- Commercial Solar Power Purchase Program
- PRPA 22 MW PV solar plant
- 2015 grant program for low income sector

Efficiency Works[™]

- Diagnostic Audit Prioritized Recommendations
- Efficiency Rebates
- Certified Contractor List
- Home Efficiency Loan Program

Home Efficiency Lone Program

- Term: 5,7,10,15 or 20 years
- Amount: \$1,000 \$15,000
- Int. Rate: 2.5% fixed (for 2015)
- Fee: \$150 origination fee
- Projects: Home Efficiency Measures, Solar PV, Water Service Repair

2015 Solar Rebates

- Up to \$3000 residential and \$20,000 for commercial projects
- 87 residential rebate reserved now taking appl's to a waitlist
- 5 commercial rebates reserved 2 slots remain.

- CEC is building out both phase 1 and 2, 620kW total
- Approx. 250 rebates supported (2013-15 funds)
- Ceremonial Groundbreaking March 24
- ~ 2000 modules are now on-site
- "Don't change that dial!" more to come with Mike
 Dow from Clean Energy Collective

Commercial Solar Power Purchase Program ("SP3")

- Program to help Fort Collins meet Colorado renewable energy standard and climate action goals
- Applications Closed February 2014
- 4 sites operating, 15 total in 2015
- 3.7 MW total

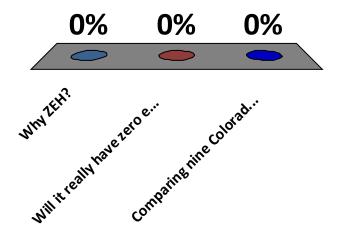
Platte River Power Authority

• 22 MW in 2016

- Increase the amount of solar serving Fort Collins by a factor of three (in 2016)
- Increase the percentage of renewable energy for the community by 2% (from the solar project alone)
- Provide solar energy equivalent to the use of approximately 3400 typical Fort Collins homes
- Reduce GHG emissions by approximately 25,000 metric tons, or a little over 1% of the total community emissions in 2014

Low Income Solar

- 2015 Working with Social Sustainability Dept. to request and select from solar grant proposals from Low Income Housing providers
- Emphasis on the direct benefit of lower utilities cost to low income families



At this point

What would you like to hear about the most?

- A. Why ZEH?
- B. Will it *really* have zero energy *performance*?.....how the home and occupants meet or miss ZE together.
- C. Comparing nine Colorado ZEH projects.

Background: Typical Residential Solar Economics

- A 3000 Watt (3 kilo-watt, 3kW) PV system offsets roughly 50% of electric use in an average Fort Collins home.
- A 3kW system costs roughly \$12k to install
- Typical first year utility bill savings are roughly \$380
- Final cost to a typical homeowner after rebates and tax credits is roughly \$5400 leading with a payback period of 12 to 14 years.

Community-Owned Solar for Fort Collins

A New Spin on Solar

April 1, 2015

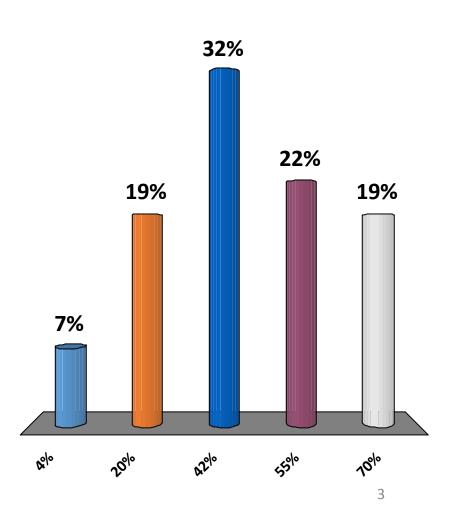
CEC | Our Growing List of Partners

Western Massachusetts Electric A Northeast Utilities Company

It's how we're all connected

Fort Collins

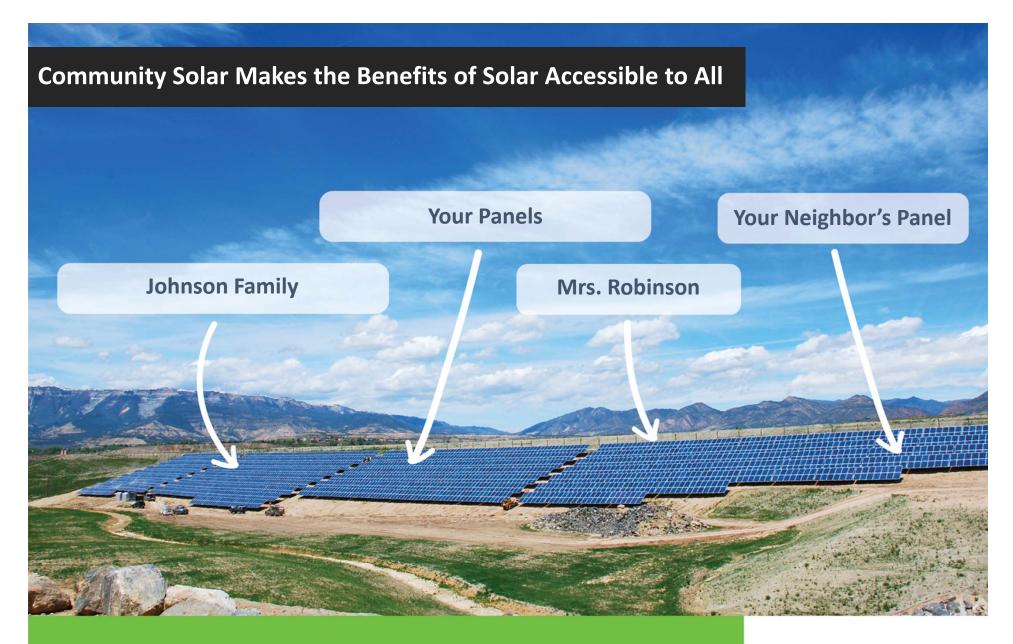
Kit Carson Cooperative Community Solar Sun for All - All for Sun! A Touchurone Energy Cooperative 🎊



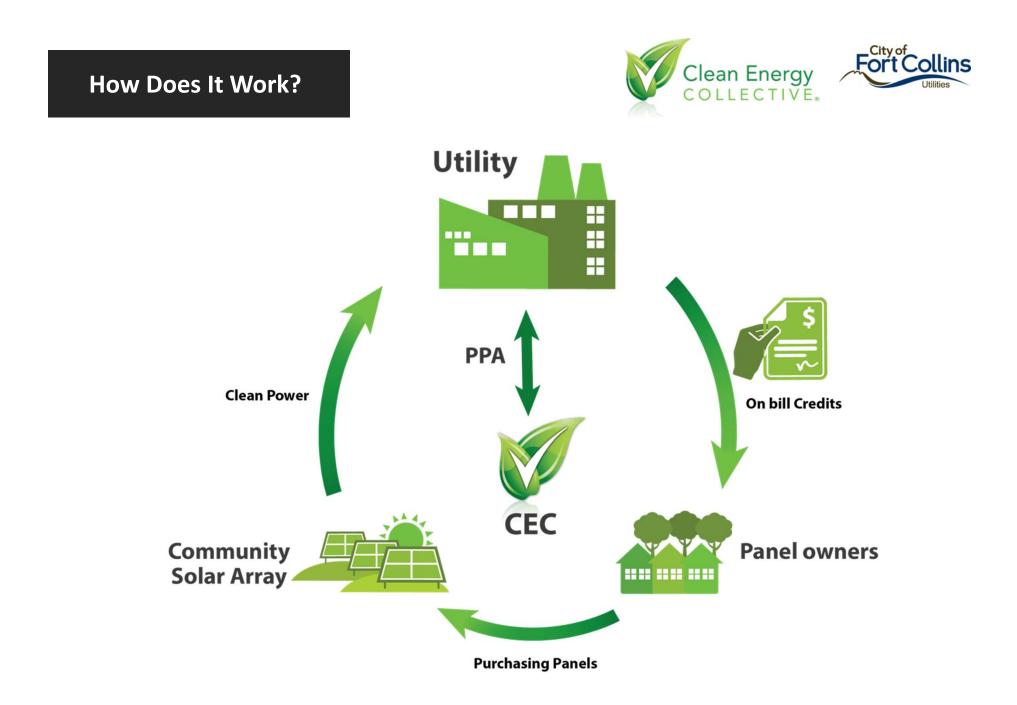
According to Department of Energy estimates, what percentage of homes in the US are ideally sited for rooftop solar?

A. 4%
B. 20%
C. 42%
D. 55%

E. 70%



According to Department of Energy estimates, what percentage of homes in the US are ideally sited for rooftop solar?


- a. 4%
- b. 20%
- c. 42%
- d. 55%
- e. 70%

There are many reasons for this, including roof orientation, space limitations, shading from trees and other buildings, shared roof ownership (condos), structural issues, financial barriers, and others.

- Centralized, ideally sited facility
- A customer-owned asset that generates payback
- Operations and maintenance handled
 - by CEC for system lifetime

What if I move within the utility network?

No problem! Your system can move with you.

What if I'm leaving the area?

Customers have options:

- Wrap it up into the sale of your home
- Sell it separately to any utility customer
- Gift it to a relative or include it in your estate planning

Making Solar Simple & Financially Smart

To do a utility-scale community solar project, there is a lot of complexity to wade through....

- No site visits, roof assessments, or costly improvements to your property are necessary
- No aesthetic or structural integrity issues to consider
- Comprehensive operations and maintenance program included

...CEC's goal is to make it easy and hassle-free the customer.

O&M Trust Account

- Held in the name of the community solar array's LLC
- CEC seeds the account with proceeds from initial sales
- Funded over time by a percentage of array's production

Warranties

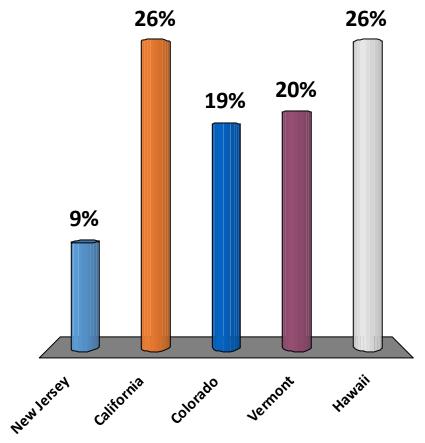
- 25 year warranty on panels
- 10 year warranty on inverter

Insurance

- Ongoing insurance for the entire array
- Comprehensive coverage against loss

- May 2014: Power Purchase Agreement signed
- June 2014: Program Launch Date
- November 2014: Additional Rebate Funding Phase II of Array initiated
- March 2015: Groundbreaking Event
- **Currently:** Equipment on site, site surveying; Construction imminent
- June 2015: Expected Completion Date

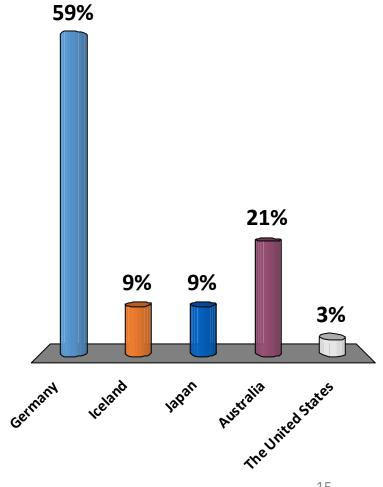
Riverside Community Solar Array



- Clean Energy Collective (CEC) was founded in 2009
- **Pioneered** the country's first large-scale community-owned solar arrays
- **40 producing solar systems online** or under development, >26 MW of power
- Currently serving customers of **18 utilities in 9 states**
- **Our vision** is to bring the opportunity to own solar to every grid-connected customer across the country

What state leads the US in solar on a per-capita basis?

- A. New Jersey
- B. California
- C. Colorado
- D. Vermont
- E. Hawaii


What state leads the US in solar on a per-capita basis?

- a. New Jersey
- b. California
- c. Colorado
- d. Vermont
- e. Hawaii

...Colorado is number 10 on that list, placing us behind New Jersey, North Carolina, and Vermont.

What country leads the world in solar measured by total capacity?

- A. Germany
- B. Iceland
- C. Japan
- D. Australia
- E. The United States

What country leads the world in solar measured by total capacity?

- a. Germany
- b. Iceland
- c. Japan
- d. Australia
- e. The United States

...The US comes in at number 5, with about 1/3 of Germany's total capacity.

Welcome to the renewable energy future!

Mike Dow Product Manager 720-460-5114 mike.dow@easycleanenergy.com

Ft. Collins Revive Community: Zero Energy Homes

Paul Norton Norton Energy R&D (NERD) Go Solar, Ft. Collin Utility April 1, 2015

2005 NREL/Habitat for Humanity Wheatridge, CO

1280 sq ft – R40 walls – solar water heating - 4 kW PV

2005 Solar Harvest House Boulder, CO

4600 sq ft – R34 walls – active and passive solar heating – 8.7 kW PV

2008 Solar Row Townhomes Boulder, CO

1250 to 1700 sq ft - R33 walls - 96 ft² solar thermal - 3 kW PV

2020 Planning and Information for California ZNE Homes

REVIVE Fort Collins

A SUPPLEMENT TO PENTON MEDIA PUL

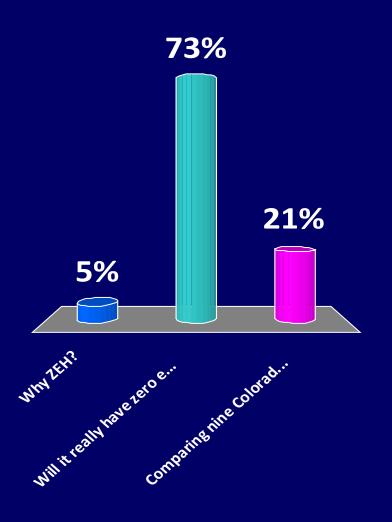
\$ (970) 420.0000

Renewable, Sustainable and Healthy

zeronetenergy

The future of quality living

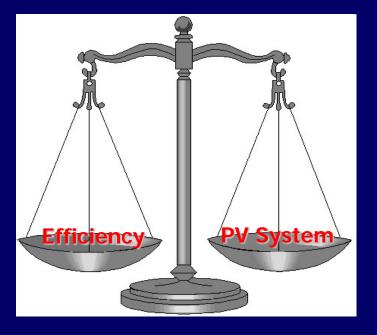
Just minutes from Old Town Fort Collins


construction in California will be zero net energy by 2020, and all new commercial construction in California will be zero net energy by 2030.

- 3 kW PV

At this point What would you like to hear about the most?

- A. Why ZEH?
- B. Will it *really* have zero energy *performance?....*how the home and occupants meet or miss ZE together.
- C. Comparing nine Colorado ZEH projects.


- The Zero Energy Homes: What and How?

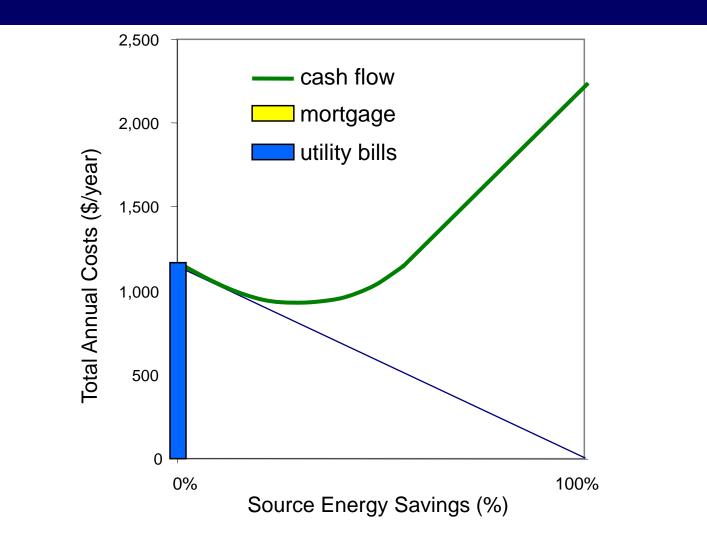
- The Fort Collins Revive ZEH Community
- Other possible topics:
 - A Why make ZEH?
 - B Will it *really* have zero energy *performance?*....how the home and occupants meet or miss ZE together.
 - C Comparing nine Colorado ZEH projects.

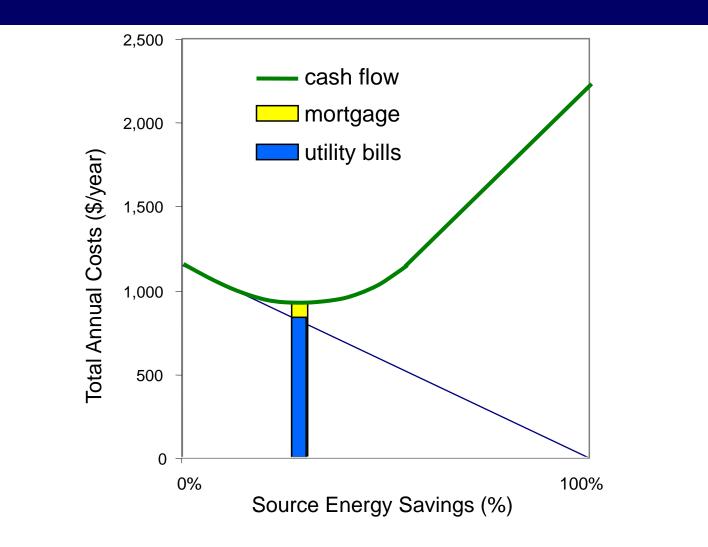
What is a Zero Energy Home?

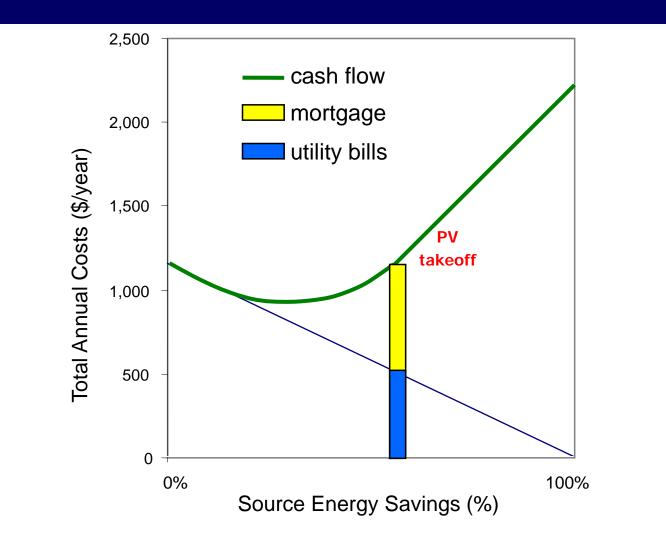
Zero Energy Liomes consume no energy!

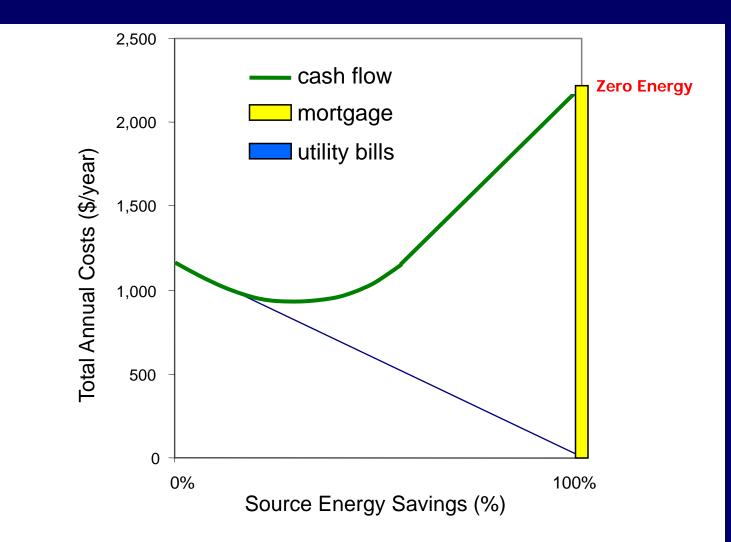
What is a Zero Energy Home?

Zero Energy Homes produce

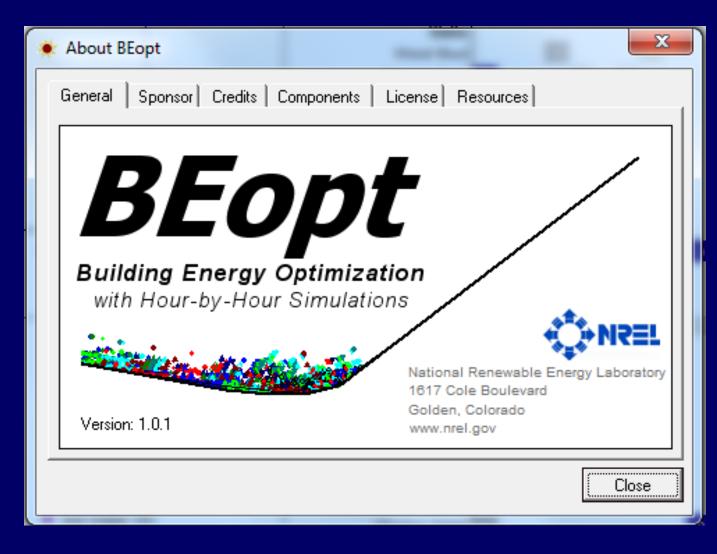

as much energy as they

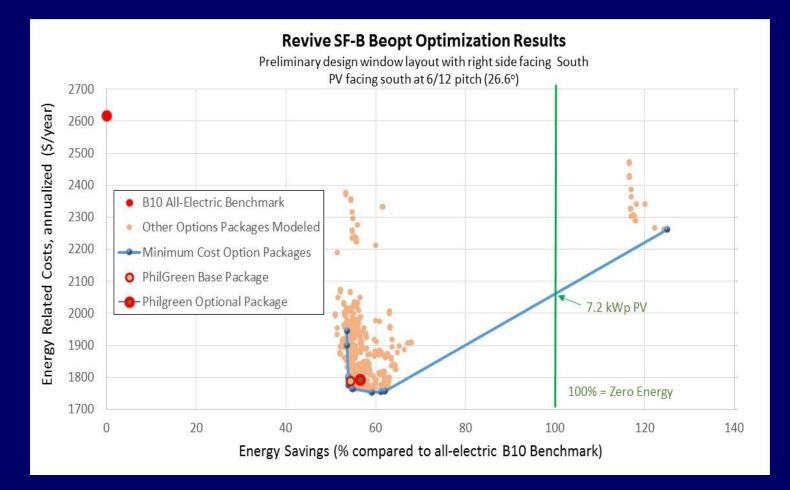

consume


on an annual basis.


Zero NET Energy Home

HOW? How to make a Zero Energy Home

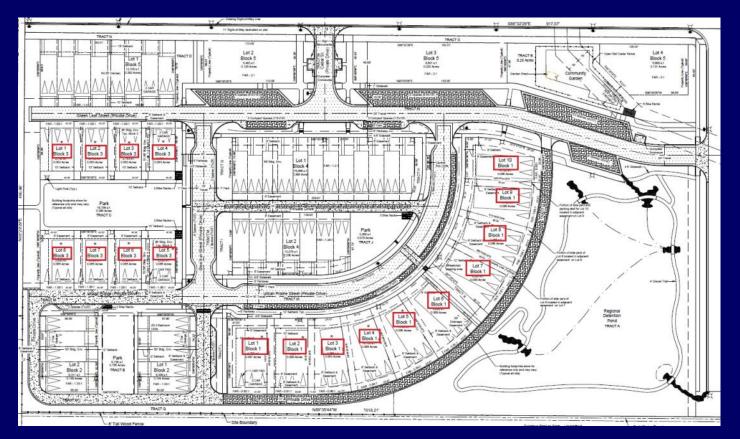




BEopt Building Energy Optimization

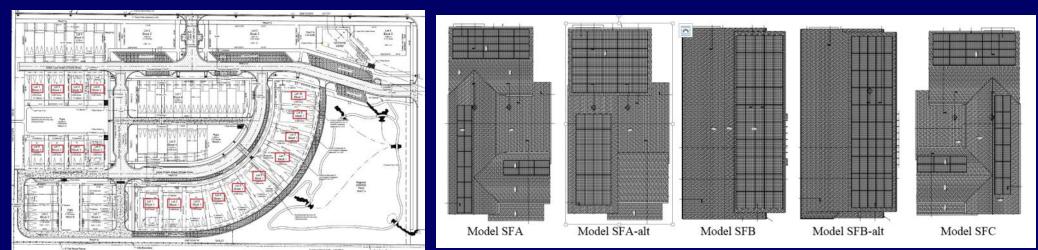
Revive Initial BEopt Results

- PV is south facing at 6/12 pitch (27° tilt)
- Single-family (no second kitchen and appliance loads)
- National average construction costs (RSMeans)


The Real World

- Local pricing and other cost tradeoffs
- Builders and trades experience, "Buildability"
- Specific equipment choices
- Actual air tightness achievable
- Lot orientations
- Architectural variations
 - Window areas and orientations
 - Window overhangs
 - Rooflines

Group Name	Category Name	Beopt Optimum Package	Philgreen Base Package	Philgreen Options Package	High Efficiency Package		
Walls	Wood Stud	Ft Collins Revive 2x6 24"OC Cellulose	same	same	same		
	Wall Sheathing	OSB, R-10 XPS	Ft Collins Revive R6.6 1 in xps	Ft Collins Revive R6.6 1 in xps	OSB, R-15 XPS		
	0		· · · ·	R-21 Fiberglass Batt, 2x6, 24 in o.c.	R-21 Fiberglass Batt, 2x6, 24 in o.c.		
	Interzonal Walls	R-21 Fiberglass Batt, Gr-1, 2x6, 24 in o.c.	same	with R6.6 XPS sheathing	with R6.6 XPS sheathing		
Ceilings/Roofs	Finished Roof	R-38 Fiberglass, 2x10	R-47.5 SIPs	R-47.5 SIPs	R-47.5 SIPs		
Foundation/Floors	Slab	Whole Slab R10, R10 Gap XPS	same	Whole Slab R20, R10 Gap XPS	Whole Slab R20, R10 Gap XPS		
		R-38 Cellulose	Ft Collins Revive flash and fill R44.5	Ft Collins Revive flash and fill R44.5	Ft Collins Revive flash and fill R44.5		
		Ft Collins Revive Preliminary designs					
Windows	Window Areas	(~17% of floor area)	same	same	12% of floor area		
		Double-Pane, High-Gain Low-E,	Ft Collins Revive Double Low-E				
	Windows	Insulated Frame, Argon Fill	Argon 2	Triple glazed - U = .18 SHGC = .22	Triple glazed - U = .18 SHGC = .22		
	Eaves	1 ft	same	same	same		
	Overhangs	None	same	same	same		
Airflow	Air Leakage	1 ACH50	same	same	same		
		Exhaust, 100% of ASHRAE 62.2	same	same	Exhaust, 50% of ASHRAE 62.2		
Lighting	Lighting	100% Fluorescent, Hardwired & Plugin	100% LED	100% LED	100% LED		
		Ft Collins Revive - Bosh SM Geo 6000					
Space Conditioning Heat Pump		TA35	same	same	same		
	Ducts	In Finished Space	same	same	same		
Water Heating							
	Water Heater	HPWH, 80 gal	Electric Premium	Electric Premium	HPWH, 80 gal		
	Solar Water						
	Heating	None	same	same	same		
SF-A Results	units	Beopt Optimum Package	Philgreen Base Package	Philgreen Options Package	High Efficiency Package		
Annual Site Energy Consumption	kWh/yr	13,573	15,706	14,863	12,063		
Site EUI w/o PV	kWh/yr ft2	5.7	6.6	6.2	5.0		
	kBtu/yr ft2	19.3	22.4	21.2	17.2		
PV required for ZEH	DC rated peak kW	9.0	10.5	9.9	8.0		
PV required for ZEH with apartment appliances	DC rated peak kW	10.0	11.5	10.9	9.0		
Site EUI with PV	Btu/yr ft2	0	0	0	0		
SF-B Results	units	Beopt Optimum Package	Philgreen Base Package	Philgreen Options Package	High Efficiency Package		
Annual Site Energy Consumption	kWh/yr	10,827	13,007	12,374	9,804		
Site EUI w/o PV	kWh/yr ft2	5.5	6.6	6.3	5.0		
	kBtu/yr ft2	18.8	22.6	21.5	17.0		
PV required for ZEH	DC rated peak kW	7.2	8.7	8.2	6.5		
PV required for ZEH with apartment appliances	DC rated peak kW	8.2	9.7	9.2	7.5		
	Btu/yr ft2	0	0	0	0		


Final Options Package

Group Name	Category Name	As-Built
Walls	Wood Stud	2x6 24"OC, Open-cell spray foam, R20
	Wall Sheathing	1" Styrofoam SIS, R5.5
	Interzonal Walls (shared with garage)	2x6 24"OC, Open-cell spray foam, R20
Ceilings/Roofs	Finished Roof	Open-cell spray foam, R49
Foundation/Floors	Slab	Whole Slab R10, R10 perimeter
	Interzonal Floor (above garage)	11 7/8" TGI, open cell spray foam, R49
		Ft Collins Revive Preliminary designs (~17%
Windows	Window Areas	of floor area)
		Double-Pane, High-Gain Low-E, Insulated
	Windows	Frame, U = 0.29, SHGC = 0.23
	Eaves	1 ft
	Overhangs	None
Airflow	Air Leakage	1 ACH50
		Heat Recovery Ventilation, flow rate =
		100% of ASHRAE 62.2, sensible recovery
	Mech Ventilation	efficiency = 70%
Lighting	Lighting	100% LED, Hardwired & Plugin
		Bosh SM Geo 6000 TA35, COP = 4.1, EER =
Space Conditioning	Ground Source Heat Pump	18.4 Btu/Wh
	Ducts	In conditioned space
Water Heating	Water Heater	HPWH, 80 gal
	Solar Water Heating	None
Appliances	Main house refrigerator	Energy Star, 18 cu. ft, 480 kWh/yr
	Main house range	Electric, standard, 584 kWh/yr
	Main house dishwasher	Energy Star, 318 kWh/yr
	Main house clothes washer	Energy Star
	Main house clothes dryer	Electric, standard
	Carriage house refrigerator	Energy Star, 18 cu. ft, 480 kWh/yr
	Carriage house range	Electric, standard, 584 kWh/yr
	Carriage house dishwasher	Energy Star, 318 kWh/yr
	Carriage house clothes washer	Energy Star
	Carriage house clothes dryer	Electric, standard
Other Loads	Miscellaneous Electric Loads	BA Benchmark, SF-A 2606 kWh/yr
	(as specified by the Building America	BA Benchmark, SF-B 2225 kWh/yr
	Home Simulation Protocol)	BA Benchmark, SF-C 2477 kWh/yr

Orientation			SFA	SFB	SFC
of the right side	Azimuth angle	Number	Consumption	Consumption	Consumption
of the home	(degrees, south = 0)	of lots	(kWh/yr)	(kWh/yr)	(kWh/yr)
South	0	2	14,997	12,605	14,396
East	270	4	15,155	12,717	14,461
West	90	6	15,152	12,720	14,314
Revive lot 8	16	1	15,017	12,646	14,393
Revive lot 7	27	1	15,044	12,685	14,443
Revive lot 6	40	1	15,091	12,564	14,443
Revive lot 5	55	1	15,120	12,629	14,408
Revive lot 4	60	1	15,123	12,649	14,358
Revive lot 3	80	1	15,141	12,702	14,296
Weighted average			15,956	13,389	15,176

Table 5 – SFA PV output for each array and the whole house by orientation

				Model SFA																
			Anay 1					Array 2					Array 3					TOTALS		
Orientation	Azimuth angle																	Size		kWh/year
of the right side	(degrees,	Number	Number of	Size		Orientation	Output	Number of	Size		Orientation	Output	Number of	Size		Orientation	Output	(rated	Output	per rated
of the home	south = 0)	oficts	Panels	(rated kW)	Pitch	(degrees)	(kWh/yr)	Panels	(rated kW)	Pitch	(degrees)	(kWh/yr)	Panels	(rated kW)	Pitch	(degrees)	(kWh/yr)	KW)	(kWh/yr)	kW
South	0	2	6	1.5	9:12	270	1653	14	3.5	9:12	180	2194.5	20	5.0	9:12	270	5510	10.0	9358	936
East	270	4	6	1.5	9:12	180	940.S	14	3.5	9:12	90	3580.5	20	5.0	9:12	180	3135	10.0	7656	766
West	90	9	6	1.5	9:12	0	2124	14	3.5	9:12	270	3857	20	5.0	9:12	0	7080	10.0	13061	1306
Revive lot 8	16	1	6	1.5	9:12	286	1803	14	3.5	9:12	196	2299.5	20	5.0	9:12	286	6010	10.0	10113	1011
Revive lot 7	27	1	6	1.5	9:12	297	1894.5	14	3.5	9:12	207	2432.5	20	5.0	9:12	297	6315	10.0	10642	1054
Revive lot 6	40	1	6	1.5	9:12	310	1992	14	3.5	9:12	220	2667	20	5.0	9:12	310	6640	10.0	11299	1130
Revive lot S	55	1	6	1.5	9:12	325	2074.S	14	3.5	9:12	235	3006.5	20	S.0	9:12	325	6915	10.0	11996	1200
Revive lot 4	60	1	6	1.5	9:12	330	2097	14	3.5	9:12	240	3129	20	5.0	9:12	330	6990	10.0	12216	1222
Revive lot 3	30	1	6	1.5	9:12	350	2145	14	3.5	9:12	260	3622.5	20	5.0	9:12	350	7150	10.0	12918	1292
Weighted Averages							1117					902							10418	1042

Table 6 – SFA-alt PV output for each array and the whole house by orientation

				Model SFA-alt														
			Array1						Array 2						TOTALS			
Orlentation	Azimuth angle														kWh/year	Percent		
of the right side	(degrees,	Number	Number of	Size		Orlentation	Output	Number of	Size		Orlentation	Output	Size	Output	perrated	Difference		
of the home	south =0)	oflots	Panels	(rated kW)	Pltch	(degrees)	(kWh/yr)	Pane Is	(rated kW)	Pitch	(degrees)	(kWh/yr)	(rated kW)	(kWh/yr)	kW	With SFA		
South	0	2	24	6.0	3:12	180	5820	35	8.8	3:12	270	10281	14.8	16101	1092	16.7%		
East	270	4	24	6.0	3:12	90	6804	35	8.8	3:12	180	8488	14.8	15292	1037	35.4%		
West	90	6	24	6.0	3:12	270	7050	35	8.8	3:12	0	11541	14.8	18591	1260	-3.5%		
Revive lot 8	16	1	24	6.0	3:12	196	5910	35	8.8	3:12	286	10666	14.8	16576	1124	11.1%		
Revive lot 7	27	1	24	6.0	3:12	207	5994	35	8.8	3:12	297	10929	14.8	16923	1147	7.8%		
Revive lot 6	40	1	24	6.0	3:12	220	6174	35	8.8	3:12	310	11209	14.8	17383	1178	4.3%		
Revive lot 5	55	1	24	6.0	3:12	235	6402	35	8.8	3:12	325	11436	14.8	17838	1209	0.8%		
Revive lot 4	60	1	24	6.0	3:12	240	6486	35	8.8	3:12	330	11489	14.8	17975	1219	-0.2%		
Revive lot 3	80	1	24	6.0	3:12	260	6858	35	8.8	3:12	350	11594	14.8	18452	1251	-3.2%		
Weighted Averages							1048					1148		16331	1107	6.3%		

Table 7 – SFB and SFB-alt PV output for each array and the whole house by orientation

					Mo	del SFB			Model SFB-alt							
					Only	one array			Only one array							
Orlentation	Azimuth angle													kWh/year	Percent	
of the right side	(degrees,	Number	Numberof	Size		Orlentation	Output	kWh/yearper	Number of	Size		Orientation	Output	perrated	difference	
of the home	south = 0)	of lots	Panels	(rated kW)	Pitch	(degrees)	(kWh/yr)	rated kW	Panels	(rated kW)	Pitch	(degrees)	(kWh/yr)	kW	with SFB	
South	0	Z	50	12.5	6:12	0	17437.5	1395	50	12.5	9:12	0	17700	1416	1.5%	
East	270	4	50	12.5	6:12	270	14287.5	1143	50	12.5	9:12	270	13775	1102	-3.6%	
West	90	6	50	12.5	6:12	90	13450	1076	50	12.5	9:12	90	12768	1023	-4.9%	
Revive lot 8	16	1	50	12.5	6:12	16	17287.5	1383	50	12.5	9:12	16	17513	1401	1.3%	
Revive lot 7	27	1	50	12.5	6:12	27	17037.5	1363	50	12.5	9:12	27	17188	1375	0.9%	
Revive lot 6	40	1	50	12.5	6:12	40	16525	1322	50	12.5	9:12	40	16563	1325	0.2%	
Revive lot 5	55	1	50	12.5	6:12	55	15750	1260	50	12.5	9:12	55	15613	1249	-0.9%	
Revive lot 4	60	1	50	12.5	6:12	60	15500	1240	50	12.5	9:12	60	15275	1222	-1.5%	
Revive lot 3	80	1	50	12.5	6:12	80	14175	1134	50	12.5	9:12	80	13663	1093	-3.6%	
Weighted Averages							13976	1118					13630	1090	-2.5%	

<u>Table 8 – SEC PV output for each array and the whole house by orientation</u>

- Two homes per building (i.e. second set of appliance and kitchen loads)
- Efficiency package somewhat different than BEopt optimum package
- Variation in consumption with lot orientation
- Multiple roof planes
- Non-optimal PV orientations

Average PV size needed for ZEH performance 12 to 14 kW/building (6 to 7 kW/home)

$\mathsf{REVIVE}_{\mathsf{Fort}\,\mathsf{Collins}}$

Renewable, Sustainable and Healthy

The future of quality living

Just minutes from Old Town Fort Collins

Time remaining?

- A Why make ZEH?
- B Will it *really* have zero energy *performance?*....how the home and occupants meet or miss ZE together.
- C Comparing nine Colorado ZEH projects.

Paul Norton Norton Energy R&D paul@paulnorton.net 303-579-3377 WILL IT *REALLY* HAVE ZERO ENERGY *PERFORMANCE?*.....

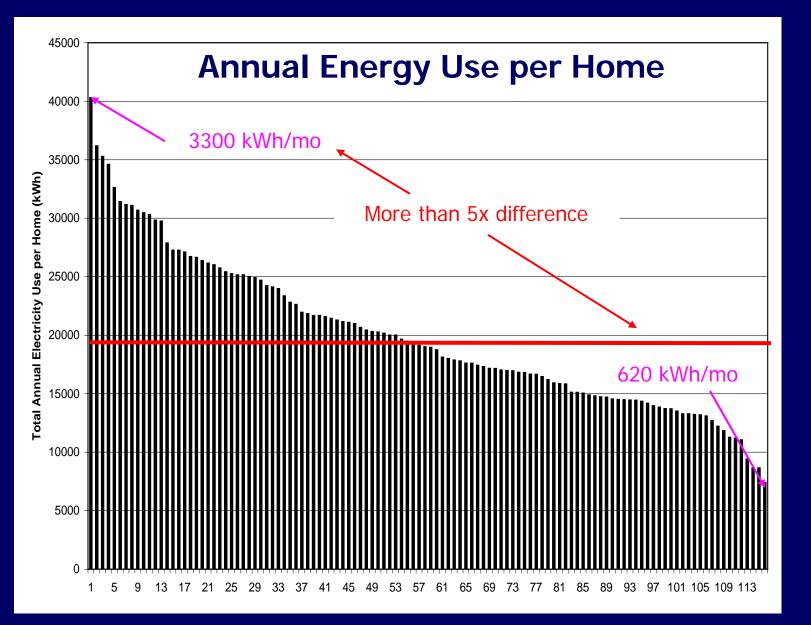
HOW THE HOME AND OCCUPANTS MEET OR MISS ZE TOGETHER.

Energy Use in Habitat BA Benchmark House

Will it *really* be ZERO??

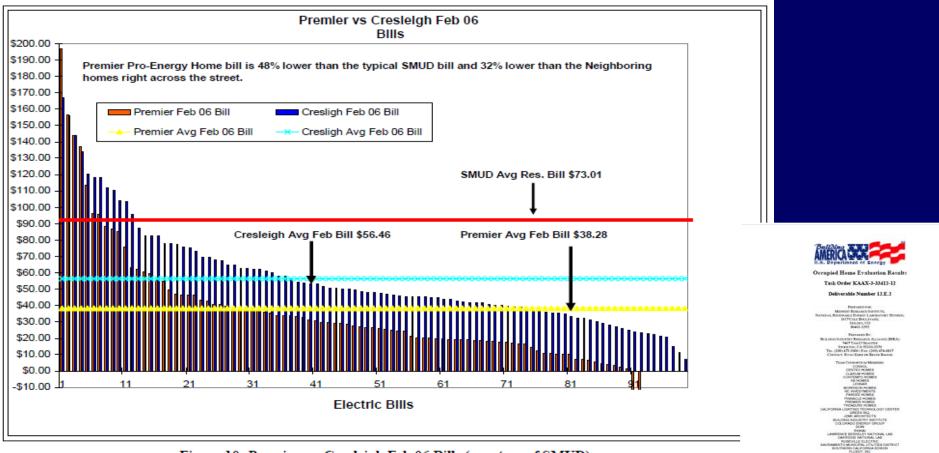
In any given year, it depends on....

Plug loads


(TVs, DVDs, Microwave, computers, stereo, toaster, electric blanket, hair dryer, the list goes on!)

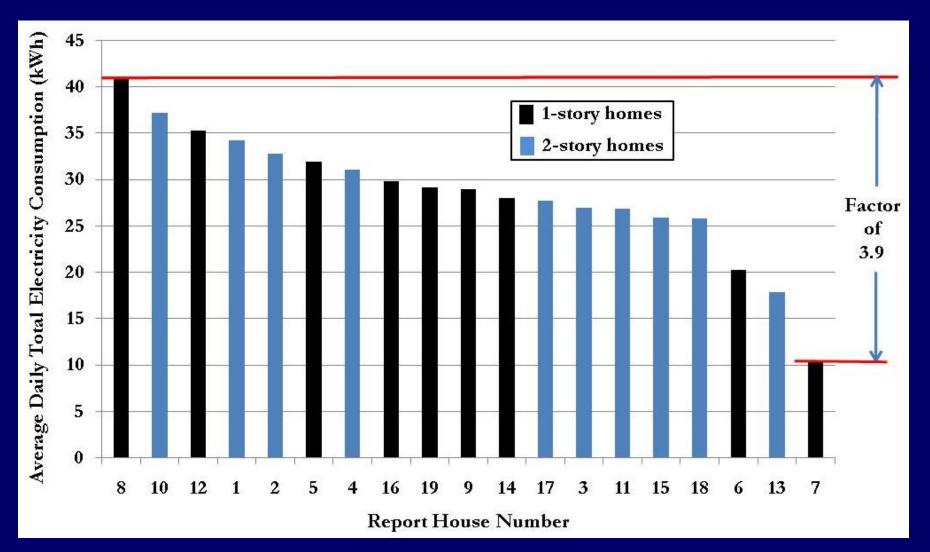
- Specific weather conditions
- Temperature set points
- Hot water use

The house AND the occupants meet or miss the zero energy target *TOGETHER*


It could be

Energy use depends on us!

Las Vegas Homes with identical energy efficiency features


Example: Premier Gardens, CA

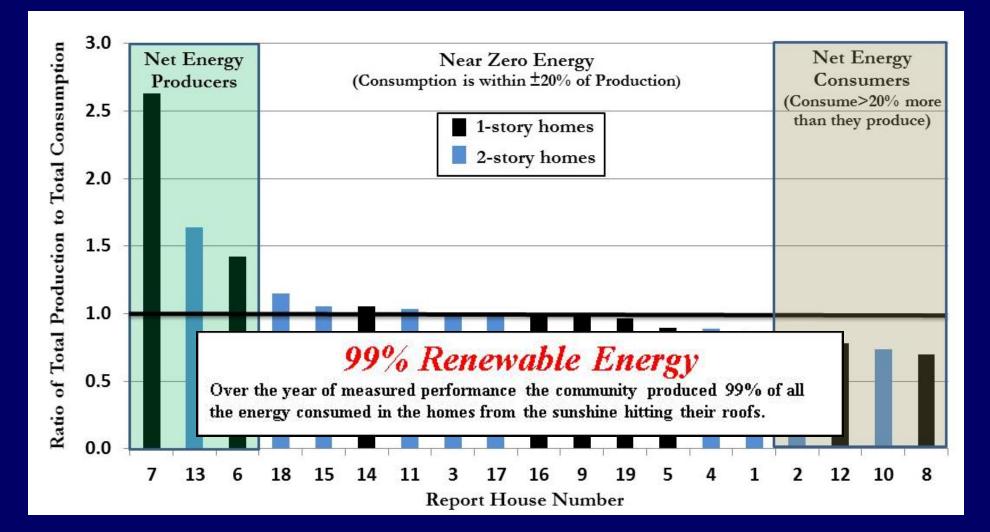
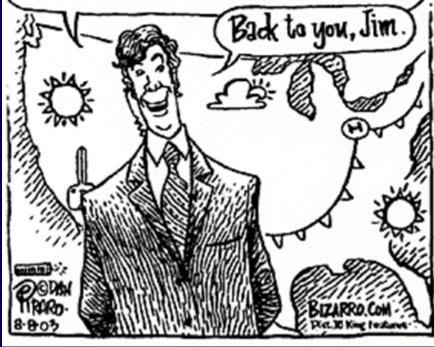

DATE NOVEMBER 30, 2006

Figure 10: Premier vs. Cresleigh Feb 06 Bills (courtesy of SMUD)

There are large home-to-home variations in energy use

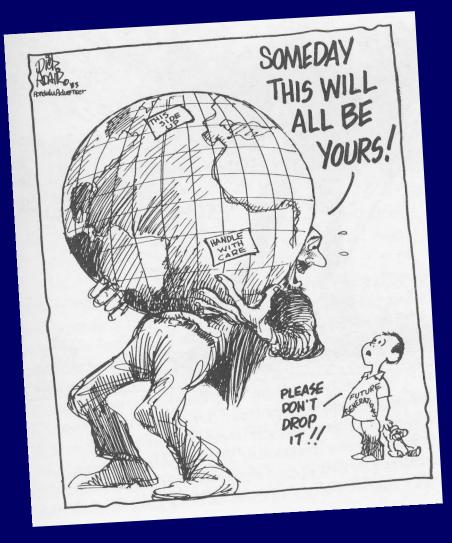
There are large home-to-home variations in energy use

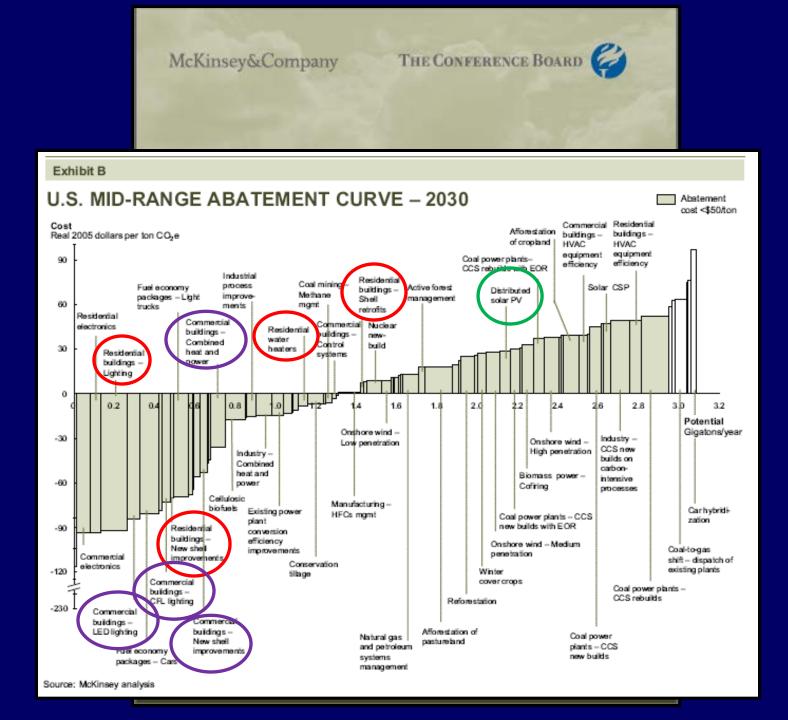


Why make Zero Energy Homes?

Why Zero Energy Homes?

of all carbon dioxide emissions in the U.S. are due to our home energy use. Our extended forecast includes global warming & the catastrophic end of the human race. But for the weekend, it's looking like sunny skies, mild temperatures, & a general apathy toward environmental concerns.




Why Zero Energy Homes?

Homes account for

of all U.S. electricity use

Zero Energy Homes: Boulder/Denver case studies

- Present nine case studies of cold climate completed ZEH in this area (mostly in Boulder)
- Compare attributes of these homes
- Discuss some issues with ZEH

Boulder/Denver area ZEH or near ZEH

1. The Solar Harvest House 2005 2005 2. NREL/Habitat For Humanity 3. The Next West House - ReQ8 single-family 4. The NZE House 2008 5. The Balsam Project 2010 6. Solar Row 2007 New, multi-fareing9 7. BCHA Paradigm 8. Scrub Oak 2007 Retrofit, single 008ily 9. Boulder ZED 2

1. The Solar Harvest House

1. The Solar Harvest House

7.9/6.0/5.3 (45/34/30)

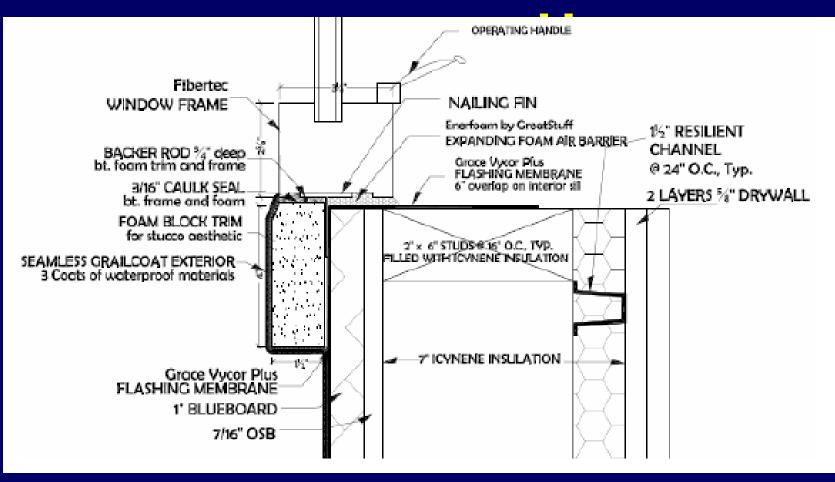
Boulder, CO Built in 2005 Builder: Ecofutures HDD: 3035 (18C base) 5500 (65F base)

English units for R-value are hr ft² °F/Btu Attic Insulation: Wall Insulation: Basement wall Insulation: Window U-value: 7.9 K m²/W (R-45) 6.0 K m²/W (R-34) 5.3 K m²/W (R-30) N: 0.68 W/K m² (0.12 Btu/hr ft² °F) W&E: 1.14 (0.20) 0.09 ACHn

8.7 kW

426 m² (4585 ft²)

Air leakage:

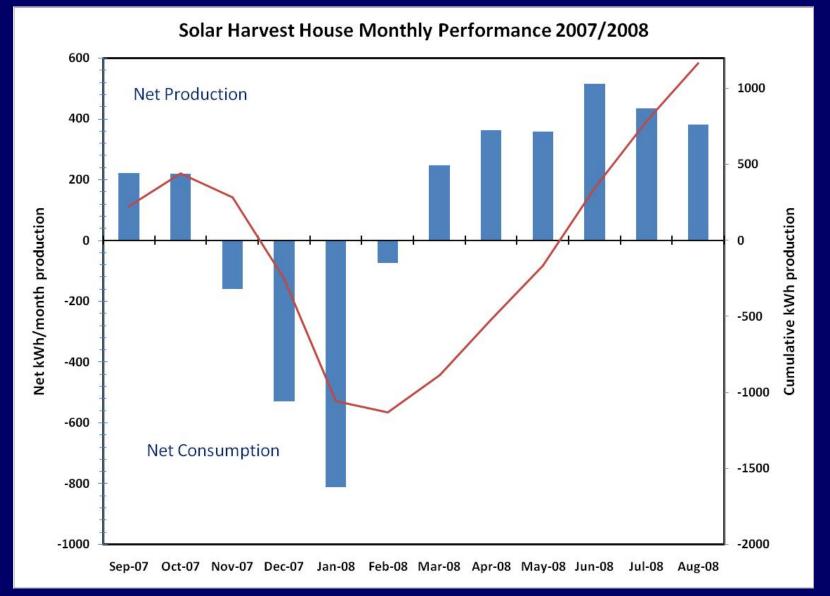

Size:

Heating System: Sunspace, Active solar, elect. backup Cooling System: Indirect evaporative system (Coolerado), whole house fan, earth tube for ventilation air Ventilation System: Energy Recovery Ventilator (ERV)

PV System:

8.7 kW

1. The Solar Harvest


Wall Insulation: $6.0 \text{ K m}^2/\text{W}$ (R-34)

1. The Solar Harvest House

1. The Solar Harvest

2. The NREL/Habitat ZEH

2. The NREL/Habitat ZEH

10.6/7.0/5.3 (60/40/30)

4.0 kW

Size:

Wheat Ridge, CO Built in 2005 Builder: Habitat for Humanity of Metro Denver HDD: 3300 (18C base) 6000 (65F base)

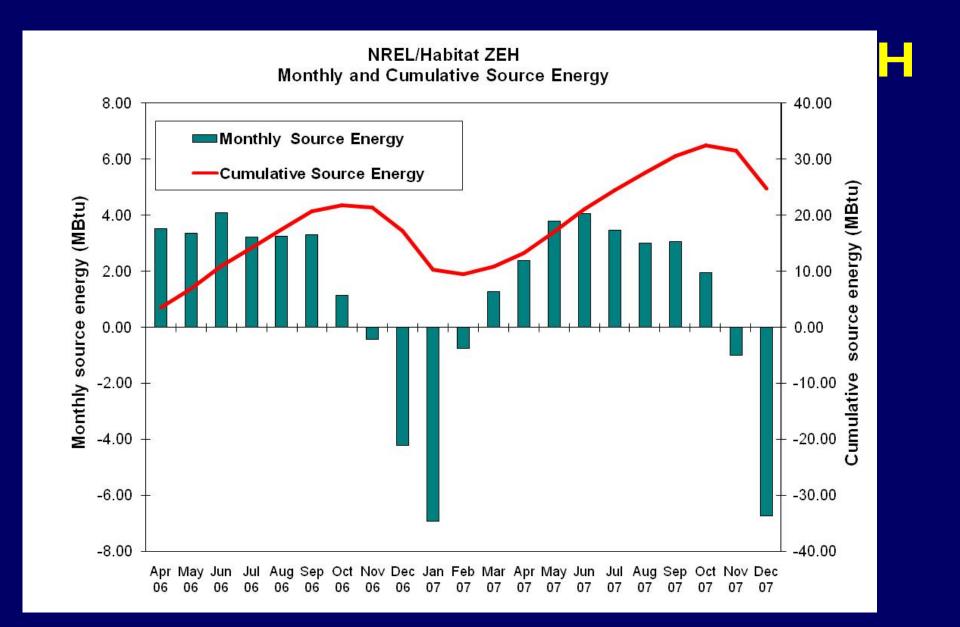
English units for R-value are hr ft² °F/Btu Attic Insulation: Wall Insulation: Basement wall Insulation: Window U-value: 119 m² (1284 ft²)

10.6 K m²/W (R-60) 7.0 K m²/W (R-40) 5.3 K m²/W (R-30) S: 1.70 W/K m² (0.30 Btu/hr ft² °F) N,W,&E: 1.31 (0.23) 0.15 ACHn

Air leakage:

Heating System: Sun tempered, gas single-point heater, electric baseboards Cooling System: None Ventilation System: Energy Recovery Ventilator (ERV)

PV System:


4.0 kW

2. The NREL/Habitat ZEH

2. The NREL/Habitat

3. The Next West House

3. The Next West House

13.2/8.8/? (75/50/?)

9.7 kW

Size:

Boulder, CO Built in 2008 Owner: Bruce Oreck Arch: Jim Logan Builder: Hughes Const. HDD: 3035 (18C base) 5500 (65F base)

English units for R-value are hr ft² °F/Btu Attic Insulation: Wall Insulation: Basement wall Insulation: Window U-value: Air leakage: 336 m² (3617 ft²)

13.2 K m²/W (R-75) 8.8 K m²/W (R-50) not available (ICF construction) not available not available

Heating System: Ground source heat pump Cooling System: Ground source heat pump Ventilation System: Heat Recovery Ventilator (HRV)

PV System:

9.7 kW

3. The Next West House

- SIPs walls
- LEED Platinum rated
- LED lighting throughout
- Grey water system
- Induction cooktop
- Battery back-up system (900 amp-hours)

4. The NZE House

4. The NZE House

7.0/6.2/4.2 (40/35/24)

7.2 kW

Size:

Boulder, CO Built in 2008 Ach: Architropic HDD: 3035 (18C base) 5500 (65F base)

English units for R-value are hr ft² °F/Btu Attic Insulation: Wall Insulation: Basement wall Insulation: Window U-value: Air leakage: 279 m² (3000 ft²)

7.0 K m²/W (R-40) 6.2 K m²/W (R-35) 4.2 K m²/W (R-24) 0.44 W/K m² (0.08 Btu/hr ft² °F) 0.068 ACHn

Heating System: Active solar, electric boiler backup Cooling System: closed loop earth tube for ventilation air Ventilation System: Heat Recovery Ventilator (HRV)

PV System:

7.2 kW

4. The NZE House

4. The NZE House Net energy consumption

	Total	Intensity	Intensity
	kWh	kWh/m ²	kWh/ft ²
Year 1	1700	6.1	0.57
Year 2	2000	7.2	0.67

(Family of four with two teenagers)

5. The Balsam Project

5. The Balsam Project

8.5/4.2/1.8 (48/24/10) 4.9 kW

Size:

Boulder, CO Built in 2010 Builder: Ecofutures HDD: 3035 (18C base) 5500 (65F base)

English units for R-value are hr ft² °F/Btu Attic Insulation: Wall Insulation: Basement wall Insulation: Window U-value: Air leakage: 411 m² (4421 ft²)

8.5 K m²/W (R-48) 4.2 K m²/W (R-24) 1.8 K m²/W (R-10) 1.87 W/K m² (0.33 Btu/hr ft² °F) 0.042 ACHn

Heating System: Geothermal heat pump Cooling System: Geothermal heat pump Ventilation System: Heat Recovery Ventilator (HRV)

PV System:

4.9 kW

6 Solar Row

6. Solar Row

Boulder, CO Built in 2007 Builder: Wonderland HDD: 3035 (18C base) 5500 (65F base)

English units for R-value are hr ft² °F/Btu 7.4/5.8/2.1 (42/33/12)

3.0 kW

Size: End units: 158 m² (1700 ft²) Interior units: 117 m² (1258 ft²)

Attic Insulation: Wall Insulation: Basement wall Insulation: Window U-value: 7.4 K m²/W (R-42) 5.8 K m²/W (R-33) 2.1 K m²/W (R-12) 1.70 W/K m² (0.30 Btu/hr ft² °F)

Air leakage:

0.19 ACHn

Heating System: Natural gas boiler combi system Cooling System: Whole house fan, Ductless mini-split or AC Ventilation System: exhaust only

PV System:

3.0 kW

6. Solar Row

11 Market rate units Two different heating designs NREL monitoring 3 units

Initial sales prices (2007) Interior unit: \$390,000 End unit: \$560,000

Two of the 11 units had produced more electricity than consumed in the 3 years from 2007 to 2010.

7. BCHA Paradigm

7. BCHA Paradigm Project

8.6/4.4/3.9 (49/25/40)

2.2 kW

Lafayette, CO Built in 2009 HDD: 3035 (18C base) 5500 (65F base)

English units for R-value are hr ft² °F/Btu Size: Duplex units: 145 m² (1560 ft²) detached: 84 m² (960 ft²)

Attic Insulation: Wall Insulation: Basement wall Insulation: Window U-value: Air leakage: 8.6 K m²/W (R-49) 4.4 K m²/W (R-25) 3.9 K m²/W (R-22) 1.14 W/K m² (0.20 Btu/hr ft² °F) n/a

Heating System: Geothermal heat pump
Cooling System: Geothermal heat pump
Ventilation System: Energy Recovery VentilatorPV System:2.2 kW
2.2 kW

7. BCHA Paradigm

7. BCHA Paradigm

153 units planned

8. Scruboak Retrofit

8. Scruboak Retrofit

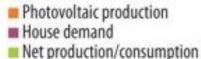
12.3/4.9/5.3 (70/28/30)

251 m² (2700 ft²)

Boulder, CO Built in 2007 HDD: 3035 (18C base) 5500 (65F base)

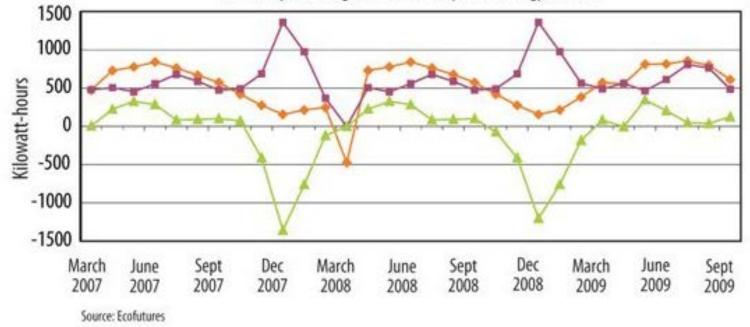
English units for R-value are hr ft² °F/Btu

Attic Insulation:	12.3 K m ² /W (R-70)
Wall Insulation:	4.9 K m ² /W (R-28)
Basement wall Insulation (new):	5.3 K m²/W (R-30)
Basement wall Insulation (existing	g): 0.9 K m²/W (R-5)
Window U-value:	0.79 W/K m ² (0.14 Btu/hr ft ² °F)
Air leakage:	n/a


Heating System: Active solar with electric boiler backup Cooling System: None Ventilation System: Energy Recovery Ventilator

PV System:

Size:


6.0 kW

Net-Energy Production 2007-2009 Graham Family House net consumption was 2,163 kilowatt-hours over 31 months

pfit

PV array averaged 86% capacity during the summers, when trees were in leaf. If the modules had not been shaded, then the system would have produced at 100% of seasonal capacity over two years and given the house a positive energy balance.

9. The ZED2 Retrofit

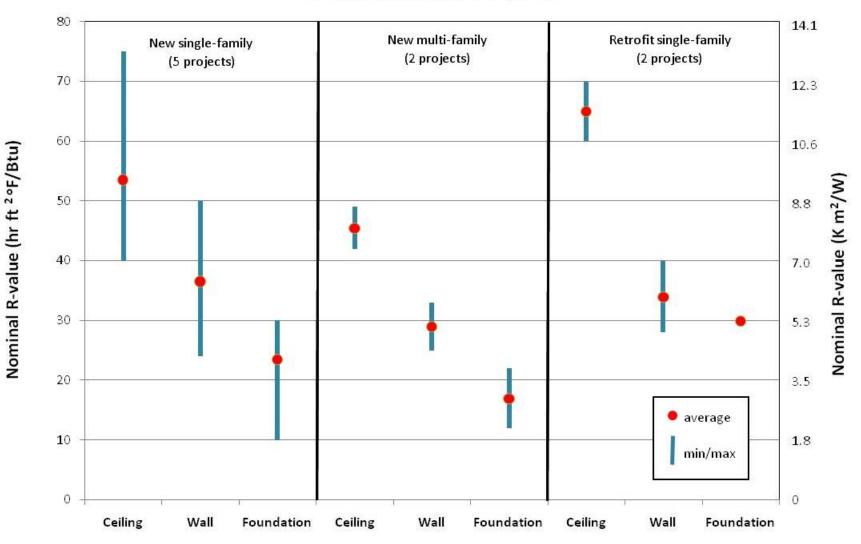
9. The ZED2 Retrofit

10.6/7.0/? (60/40/?)

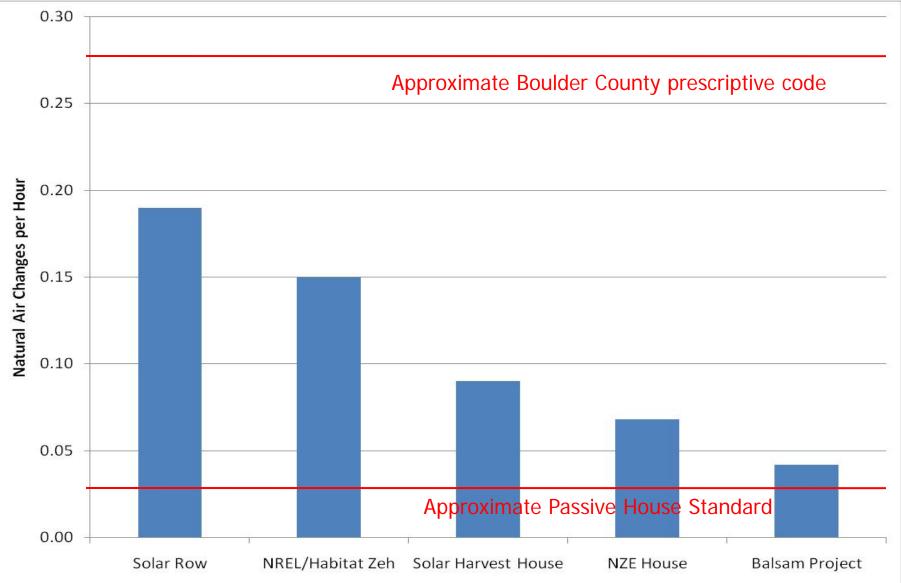
Boulder, CO Built in 2009 HDD: 3035 (18C base) 5500 (65F base)

English units for R-value are hr ft² °F/Btu Attic Insulation: Wall Insulation: Basement wall Insulation: Window U-value: Air leakage:

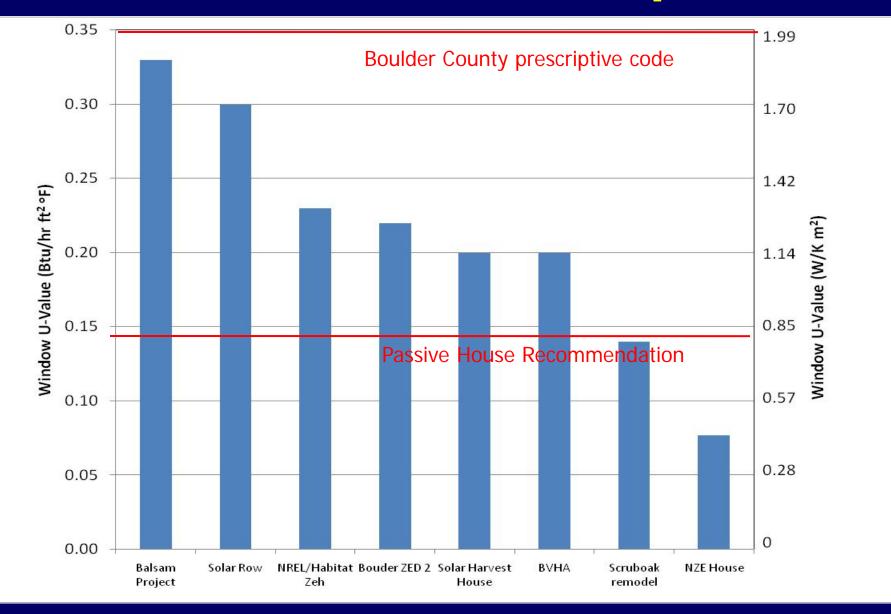
Size:


353 m² (3800 ft²) 10.6 K m²/W (R-60) 7.0 K m²/W (R-40) n/a 1.25 W/K m² (0.22 Btu/hr ft² °F) n/a

Heating System: Natural gas tankless water heater Cooling System: Evaporative cooler Ventilation System: Heat Recovery Ventilator <u>PV System:</u> 5.25 kW



Insulation


Nominal Insulation Levels Boulder/Denver Projects

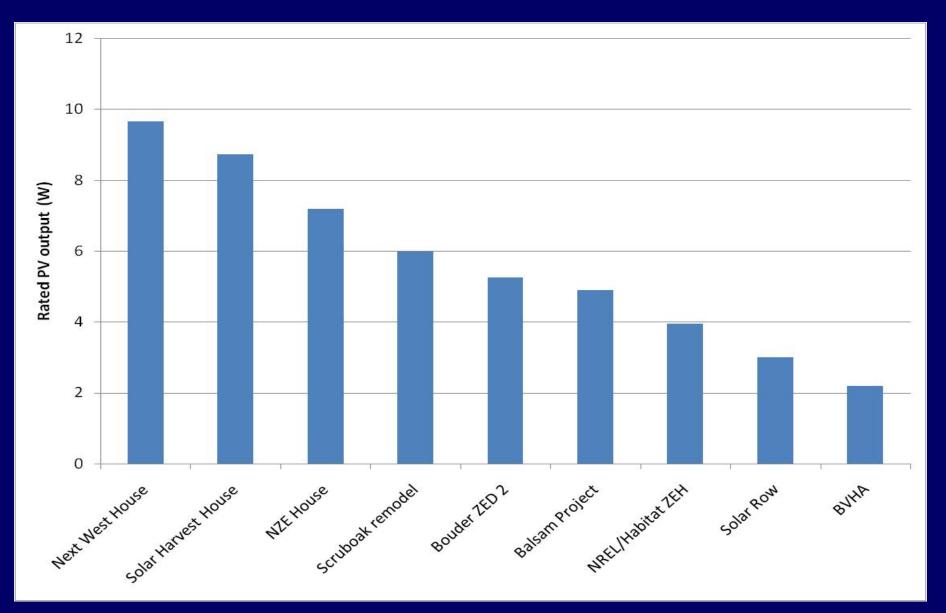
Window U-Value Comparison

Wall constructions

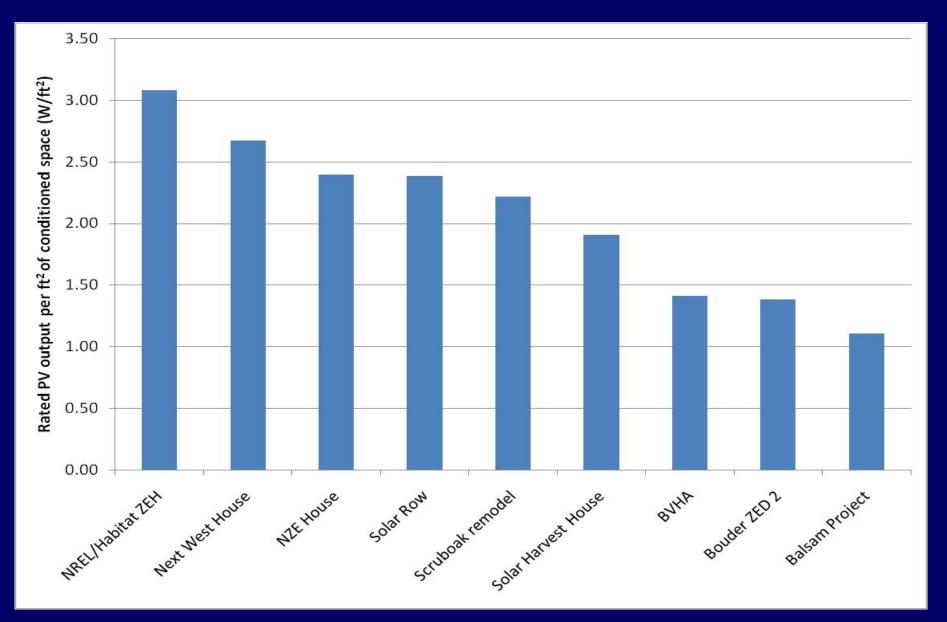
1. Solar Harvest 2x6 w/1.5" int. channel, 1" ext. foam Double 2x4 stud wall 2. Habitat ZEH 3. Next West SIPS 4. NZE House Double 2x4 stud walls 5. Balsam SIPS 2x6 w/1" ext foam 6. Solar Row 7. BCHA 2x6 8. Scruboak existing walls: double 2x4 stud wall addition: SIPs 9. ZED 2 existing walls: 2x4 studs w/3" ext. foam

Wall constructions

1. Solar Harvest	2x6 w/1.5" int. channel, 1" ext. foam
2. Habitat ZEH	Double 2x4 stud wall
3. Next West	SIPs
4. NZE House	Double 2x4 stud walls
5. Balsam	SIPs
6. Solar Row	2x6 w/1" ext foam
7. BCHA	2x6
8. Scruboak	existing walls: double 2x4 stud wall addition: SIPs
9. ZED 2	existing walls: 2x4 studs w/3" ext. foam


Heating Systems

Sunspace; active solar; electric back-up 1. Solar Harvest 2. Habitat ZEH Single point gas heater; electric baseboards 3. Next West Ground source heat pump 4. NZE House Active solar; electric boiler backup 5. Balsam Ground source heat pump 6. Solar Row Natural gas boiler; solar combisystem 7. BCHA Ground source heat pump active solar; wood stove; electric boiler 8. Scruboak 9. ZED 2 Natural gas tankless water heater


Heating Systems

1. Solar Harvest Sunspace; active solar; electric back-up Single point gas heater; electric baseboards 2. Habitat ZEH Ground source heat pump 3. Next West 4. NZE House Active solar; electric boiler backup 5. Balsam Ground source heat pump 6. Solar Row Natural gas boiler; solar combisystem Ground source heat pump 7. BCHA 8. Scruboak Active solar; wood stove; electric boiler 9. ZED 2 Natural gas tankless water heater

PV system size

PV per ft² of conditioned space

Paul Norton Norton Energy R&D paul@paulnorton.net 303-579-3377

ZEH/Utility thoughts

- Voltage regulation on distribution lines with high penetration of PV
- Distributed PV cannot currently be curtailed which could lead to more curtailment of centralized RE at higher RE penetrations
- Cost of small rooftop PV can be twice that of utility-scale PV and much more expensive than utility-scale wind.

ZEH/Utility thoughts

- Peak PV production does not coincide with most utility demand peaks
- How can ZEH be designed to better support the grid? Can we design in more dispatchable loads or peak shifting strategies?

ZEH Retrofits....

- Very high efficiency is more expensive to achieve in existing homes than in new homes, therefore the balance of investments is shifted towards larger PV systems
- A significant percentage of existing homes are not ideal for active solar thermal or PV systems due to lack of roof area, wrong orientation, or excessive shading
- Why is ZE in homes so fixed on rooftop PV? Why not long-term contracts with utility-scale RE?

Other thoughts...

- Aiming for ZE performance can lead to overproduction which is economically unfavorable with most net-metering rates.
- ZEH can be made at a lower first cost by heating with natural gas and offsetting the source energy of the natural gas with excess PV electricity production.

Other thoughts...

- In the BEopt paradigm, as PV costs go down we will build less efficient ZEH with larger PV systems
- Are there alternative philosophies on how much to invest in efficiency before turning to RE production?

ZEH and Passive House

Zero Energy Home

Produce as much energy as consumed

Invest in all efficiency that costs less than PV

Single design metric

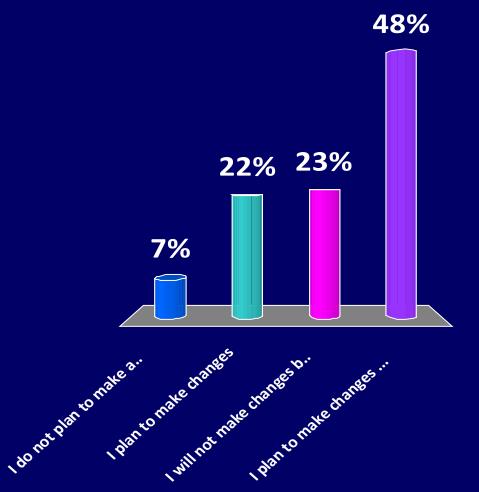
No certification

Passive House

Reduce consumption by about 90%

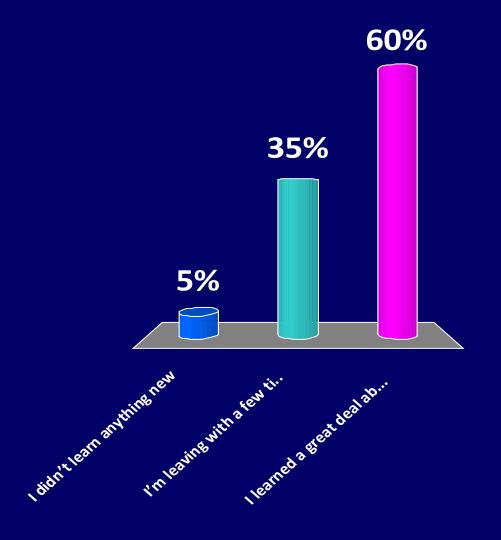
Invest in efficiency until the elimination of a conventional space heating system

Three design metrics


Formal certification

NOT included in this ZEH approach

- Embodied energy
- Life cycle analysis
- Externalized costs analysis (environmental, health and social impacts)


What is your intention to make changes or share information from the presentation?

- A. I do not plan to make any changes
- B. I plan to make changes
- C. I will not make changes but will share what I learned
- D. I plan to make changes and share what I learned

How much did you learn from the presentation?

- A. I didn't learn anything new
- B. I'm leaving with a few tips and tools
- C. I learned a great deal about the topic

