DRAINAGE POLICY

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Drainage Policy</td>
</tr>
<tr>
<td>1.2</td>
<td>Purpose and Scope</td>
</tr>
<tr>
<td>1.3</td>
<td>Regional Master Planning</td>
</tr>
<tr>
<td>1.4</td>
<td>Local Master Planning</td>
</tr>
<tr>
<td>1.5</td>
<td>Storm Runoff Determination</td>
</tr>
<tr>
<td>1.6</td>
<td>Reasonable Use</td>
</tr>
<tr>
<td>1.7</td>
<td>Water Rights</td>
</tr>
<tr>
<td>1.8</td>
<td>Drainage Planning and Required Space</td>
</tr>
<tr>
<td>1.9</td>
<td>Use of Streets</td>
</tr>
<tr>
<td>1.10</td>
<td>Nuisance Water</td>
</tr>
<tr>
<td>1.11</td>
<td>Retention Ponds and Pumping</td>
</tr>
<tr>
<td>1.11.1</td>
<td>Positive Outfall</td>
</tr>
<tr>
<td>1.11.2</td>
<td>Retention Ponds</td>
</tr>
<tr>
<td>1.11.3</td>
<td>Pumps in Detention Ponds</td>
</tr>
<tr>
<td>1.11.4</td>
<td>Sump Pumps</td>
</tr>
<tr>
<td>1.12</td>
<td>Conveyance or Detention on Private Single Family Lots</td>
</tr>
<tr>
<td>1.13</td>
<td>Lot Grading</td>
</tr>
<tr>
<td>1.14</td>
<td>Use of Criteria, Amendments, Technical Revisions and Administrative Modifications of Standards</td>
</tr>
</tbody>
</table>
2.0 PRINCIPLES
2.1 Drainage is a Regional Phenomenon That Does Not Respect the Boundaries Between Government Jurisdictions or Between Properties
Accept
2.2 A Storm Drainage System Is a Subsystem of the Total Urban Water Resource System
Accept
2.3 Every Urban Area has an Initial (i.e., Minor) and a Major Drainage System, Whether or Not They Are Actually Planned and Designed
Accept
2.4 Runoff Routing is primarily a Space Allocation Problem
Accept
2.5 Planning and Design of Stormwater Drainage Systems Generally Should Not Be Based on the Premise That Problems Can Be Transferred From One Location to Another
Accept
2.6 An Urban Storm Drainage Strategy Should Be a Multi-Objective and Multi-Means Effort
Accept
2.7 Design of the Stormwater Drainage System Should Consider the Features and Functions of the Existing Drainage System
Accept
2.8 In new Developments, Attempts Should Be Made to Reduce Stormwater Runoff Rates and Pollutant Load Increase After Development to the Maximum Extent practicable
Accept
2.9 The Stormwater Management System Should Be Designed Beginning With the Outlet or Point of Outflow From the Project, Giving Full Consideration to Downstream Effects and the Effects of off-Site Flows Entering the System
Accept
2.10 The Stormwater Management System Should Receive Regular Maintenance
Accept
2.11 Historic Drainage and Easements
Amended
2.12 Off-Site Flows
Amended
2.13 Watershed Approach to Stormwater Management
Added
2.14 Erosion and Sediment Control
Added

3.0 BASIC KNOWLEDGE
3.1 Data Collection
Delete
3.1.1 Storm Runoff and Flood Damage
Delete
3.1.2 Rainfall-Runoff Relationships
Delete
3.1.3 Inventory of Successful Projects
Delete
3.1.4 Library
Delete
3.1.5 Runoff Magnitudes
 Delete

3.2 Floodplain Data
 Delete
 3.2.1 Small Waterways
 Delete
 3.2.2 Data Inventory
 Delete
 3.2.3 Floodplains
 Delete
 3.2.4 Priority for Data Acquisition
 Delete

3.3 Data Use
 Delete
 3.3.1 Master Plan
 Delete
 3.3.2 Public Cost
 Delete
 3.3.3 Easements
 Delete

4.0 PLANNING
4.1 Total Urban System
 Accept
 4.1.1 Development Plan
 Accept
 4.1.2 Master Plan
 Delete
 4.1.3 Planning Process Ingredients
 Accept
 4.1.4 Local and Regional Planning
 Accept
 4.1.5 Site Planning
 Accept
 4.1.6 Water Quality
 Accept
 4.1.7 Water Quantity and Quality Integration
 Added

4.2 Multiple-Objective Considerations
 Accept
 4.2.1 Lower Drainage Costs
 Accept
 4.2.2 Open Space
 Accept
 4.2.3 Transportation
 Accept

4.3 Natural Channels
 Accept
 4.3.1 Channelization
 Accept
 4.3.2 Channel Storage
 Accept
 4.3.3 Major Runoff Capacity
 Accept
 4.3.4 Maintenance and Maintenance Access
 Amended
4.3.5 Open Channels
 Added

4.4 Transfer of Problems
 Accept
 4.4.1 Intra-Watershed Transfer
 Accept
 4.4.2 Inter-Watershed Transfer
 Accept
 4.4.3 Watershed Planning
 Accept

4.5 Detention and Retention Storage
 Accept
 4.5.1 Upstream Storage
 Accept
 4.5.2 Minimized Directly Connected Impervious Area Development
 Accept
 4.5.3 Downstream Storage
 Accept
 4.5.4 Water Quantity Detention
 Amended
 4.5.5 Water Quality Treatment
 Amended

5.0 TECHNICAL CRITERIA
 5.1 Design Criteria
 Accept
 5.1.1 Design Criteria
 Amended
 5.1.2 Criteria Updating
 Accept
 5.1.3 Use of Criteria
 Amended

 5.2 Initial and Major Drainage
 Accept
 5.2.1 Design Storm Return Periods
 Amended
 5.2.2 Initial Storm Provisions
 Accept
 5.2.3 Major Storm Provisions
 Accept
 5.2.4 Critical Facilities
 Accept
 5.2.5 Major Drainage Channels
 Accept
 5.2.6 Tailwater
 Accept

 5.3 Runoff Computation
 Accept
 5.3.1 Accuracy
 Accept

 5.4 Streets
 Accept
 5.4.1 Use of Streets
 Delete
5.5 Irrigation Ditches
 Accept
 5.5.1 Use of Ditches
 Amended
 5.5.2 Ditch Perpetuation
 Accept
 5.5.3 Conformance With Master Plan
 Accept
5.6 Detention and Retention Facilities Maintenance
 Accept
 5.6.1 Water Quality
 Accept

6.0 REVIEW PROCESS
 Amended
 6.1 Conceptual Review
 Amended
 6.2 Overall Development Plan (ODP) Submittal Requirements
 Amended
6.3 Drainage Plan Submittal and Review
Amended

6.4 ODP Drainage Report Contents
Amended

6.5 ODP Drawing Contents
Amended

6.6 Project Development Plan (PDP) and Building Permit Process Submittal Requirements
Amended

6.7 PDP Drainage Report
Amended
 6.7.1 Report Contents
 Amended
 6.7.2 PDP Engineering Drawings for Drainage Reports
 Amended
 6.7.3 Preparedness
 Deleted
 6.7.4 Flood Proofing
 Deleted
 6.7.5 Flood Forecasting
 Deleted
 6.7.6 Flood Modification
 Deleted
 6.7.7 Impact of Modification
 Deleted

6.8 PDP Erosion Control Report and Plan
Added

6.9 Final Plan (FP) Submittal Requirements
Added

6.10 Floodplain Modeling Reports
Added

6.11 Drainage Certification
Added
 6.11.1 Overall Site Certifications
 Added
 6.11.2 Certifications for Commercial and Multi-Family Developments
 Added
 6.11.3 Certifications for Single Family Developments
 Added
 6.11.4 Individual Lot Certifications
 Added

6.12 Final Close-Out Inspection
Added

7.0 Implementation
Delete

7.1 Adoption of Drainage Master Plans
Delete
 7.1.1 Manual Potential
Delete

7.2 Governmental Operations
Delete

7.3 Amendments
Delete

7.4 Financing
Delete
 7.4.1 Drainage Costs
Delete
8.0 REFERENCES

Accept

Tables

Table DP-1—Reasonable Use of Streets for Initial Storm Runoff in Terms of Pavement Encroachment
Delete
Table DP-2—Major Storm Runoff Recommended Maximum Street Inundation
Delete
Table DP-3—Allowable Maximums for Cross-Street Flow
Delete
Table DP-4—Required Maintenance Easement
Added

Figures

Figure DP-1—Urban Drainage and Flood Control District Boundaries
Delete

Photographs

Photograph DP-1—Denver grass-lined channel after 35 years of service. Ann Spirn of the Massachusetts institute of Technology refers to this channel as “urban poetry” in her publications. Spirn appreciates the soft natural lines
Accept
Photograph DP-3—National medal of Science winner. Dr. Gilbert White, recommends natural-like Floodplains because they save people from damages and are good for the economy
Accept
Photograph DP-4—Drainageways having “slow-flow” characteristics, with vegetated bottoms and sides can provide many benefits
Accept
Photograph DP-5—Detention basins with permanent ponding help in many ways, including flood reduction, water quality and land values
Accept
DRAINAGE LAW
 Entire Chapter Deleted

CONTENTS

Section Page
1.0 SUMMARY OF CURRENT GENERAL PRINCIPLES OF DRAINAGE AND FLOOD CONTROL LAW
Delete
1.1 Introduction
Delete
1.2 Legal Principles
Delete
2.0 GENERAL PRINCIPLES OF DRAINAGE LAW
Delete
2.1 Private Liability
Delete
2.1.1 Common Enemy Rule
Delete
2.1.2 Civil Law Rule
Delete
2.1.3 Reasonable Use Rule
Delete
2.2 Municipal Liability
Delete
2.2.1 Planning Drainage Improvements
Delete
2.2.2 Construction, Maintenance, and Repair of Drainage Improvements
Delete
2.2.3 Summary
Delete
2.3 Municipal Liability for Acts of Others
Delete
2.3.1 Acts of Omissions of Municipal Officers, Agents, and Employees
Delete
2.3.2 Municipal Liability for Acts of Developers
Delete
2.4 Personal Liability of municipal Officers, Agents, and Employees
Delete
3.0 DRAINAGE IMPROVEMENTS BY A LOCAL GOVERNMENT
Delete
3.1 Constitutional Power
Delete
3.2 Statutory Power
Delete
3.2.1 Statutes—Municipalities
Delete
3.2.1.1 Municipal Powers—Public property and Improvements
Delete
3.2.1.2 Public Improvements—Special Improvement Districts
Delete
3.2.1.3 Public Improvements—Special Improvement Districts in Municipalities
Delete
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1.4</td>
<td>Sewer and Water Systems—Municipalities</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Statutes—County</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>Public Improvements—Sewer and Water Systems</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.2.2</td>
<td>County Public Improvements</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.2.3</td>
<td>Public Improvement—Local Improvement Districts—Counties</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.2.4</td>
<td>Flood Control—Control of Stream Flow</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.2.5</td>
<td>Conservancy Law—Flood Control</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.2.6</td>
<td>Drainage Districts</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Statutes—State</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.3.1</td>
<td>Colorado Land Use Act</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.3.2</td>
<td>Drainage of State Lands</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.3.3</td>
<td>Water Conservation Board of Colorado</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.3.4</td>
<td>State Canals and Reservoirs</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.3.5</td>
<td>Regulatory Impairment of Property Rights</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.3.6</td>
<td>Intergovernmental Relationships</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Urban Drainage and Flood Control Act</td>
<td>Delete</td>
</tr>
<tr>
<td>4.0</td>
<td>FINANCING DRAINAGE IMPROVEMENTS</td>
<td>Delete</td>
</tr>
<tr>
<td>4.1</td>
<td>Capital Improvement</td>
<td>Delete</td>
</tr>
<tr>
<td>4.2</td>
<td>Local Improvement</td>
<td>Delete</td>
</tr>
<tr>
<td>4.3</td>
<td>Special Improvement</td>
<td>Delete</td>
</tr>
<tr>
<td>4.4</td>
<td>Service Change</td>
<td>Delete</td>
</tr>
<tr>
<td>4.5</td>
<td>Developer’s Cost</td>
<td>Delete</td>
</tr>
<tr>
<td>4.6</td>
<td>The Taxpayers Bill of Rights, ArticleX, Section 20, Colorado Constitution</td>
<td>Delete</td>
</tr>
<tr>
<td>4.7</td>
<td>Water Activities—Enterprise Statute 37-45, 1-101 C.R.S</td>
<td>Delete</td>
</tr>
<tr>
<td>5.0</td>
<td>FLOODPLAIN MANAGEMENT</td>
<td>Delete</td>
</tr>
<tr>
<td>5.1</td>
<td>Floodplain Regulations</td>
<td>Delete</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Constitutional Considerations</td>
<td>Delete</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Statutory Grants of Power</td>
<td>Delete</td>
</tr>
</tbody>
</table>
5.1.3 Court Review of Floodplain Regulations
Delete
 5.1.3.1 Restriction of Uses
Delete
 5.1.3.2 Health Regulations
Delete
 5.1.3.3 Determination of Boundaries
Delete
5.2 Flood Insurance
Delete
5.3 Flood Warning Systems and Notification
Delete

6.0 SPECIAL MATTERS
Delete
 6.1 Irrigation Ditches
Delete
 6.2 Dams and Detention Facilities
Delete
 6.3 Water Quality
Delete
 6.4 Professional Responsibility
Delete

7.0 CONCLUSION
Delete

Photographs
Delete

Photographs DL-1—Using a natural floodplain, even with a wetland involved, represents sound Engineering in concert with established Colorado Drainage law
Delete
PLANNING

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 THE DRAINAGE SUBSYSTEM</td>
<td>PL-</td>
</tr>
<tr>
<td>1.1 Planning</td>
<td>Accept</td>
</tr>
<tr>
<td>1.2 Planning Philosophy</td>
<td>Accept</td>
</tr>
<tr>
<td>1.3 Drainage Management Measures</td>
<td>Accept</td>
</tr>
<tr>
<td>1.4 Water Quality</td>
<td>Accept</td>
</tr>
<tr>
<td>2.0 EARLY PLANNING ADVANTAGES</td>
<td>Accept</td>
</tr>
<tr>
<td>2.1 Advantages</td>
<td>Accept</td>
</tr>
<tr>
<td>2.2 New Development</td>
<td>Accept</td>
</tr>
<tr>
<td>2.3 Get the Facts</td>
<td>Accept</td>
</tr>
<tr>
<td>2.4 Regulatory Considerations</td>
<td>Accept</td>
</tr>
<tr>
<td>3.0 CONSIDER DRAINAGE BENEFITS</td>
<td>Accept</td>
</tr>
<tr>
<td>3.1 Benefits</td>
<td>Accept</td>
</tr>
<tr>
<td>4.0 MASTER PLANNING</td>
<td>Accept</td>
</tr>
<tr>
<td>4.1 Master Plan</td>
<td>Accept</td>
</tr>
<tr>
<td>4.2 Uniformity</td>
<td>Accept</td>
</tr>
<tr>
<td>5.0 PLANNING FOR THE FLOODPLAIN</td>
<td>Accept</td>
</tr>
<tr>
<td>5.1 Floodplains</td>
<td>Accept</td>
</tr>
<tr>
<td>5.2 Concept of Floodplain</td>
<td>Accept</td>
</tr>
<tr>
<td>5.3 Tools</td>
<td>Accept</td>
</tr>
<tr>
<td>6.0 PLANNING FOR MAJOR DRAINAGE</td>
<td>Accept</td>
</tr>
<tr>
<td>6.1 Major Drainage</td>
<td>Accept</td>
</tr>
<tr>
<td>6.2 Initial Route Considerations</td>
<td>Accept</td>
</tr>
<tr>
<td>6.3 The Master Plan</td>
<td>Accept</td>
</tr>
<tr>
<td>6.4 Open Channels</td>
<td>Accept</td>
</tr>
</tbody>
</table>
7.0 PLANNING FOR INITIAL DRAINAGE
 Accept
 7.1 Initial Drainage
 Accept
 7.2 Streets
 Accept

8.0 PLANNING FOR STORAGE
 Accept
 8.1 Upstream Storage
 Accept
 8.2 Downstream Storage
 Accept
 8.3 Channel Storage
 Accept
 8.4 Other Benefits
 Accept

9.0 PLANNING FOR STORM SEWERS
 Accept
 9.1 Storm Sewers
 Accept
 9.2 Function of Storm Sewers
 Accept
 9.3 Layout Planning
 Accept
 9.4 System Sizing
 Accept
 9.5 Inlets
 Accept
 9.6 Alternate Selections
 Accept

10.0 PLANNING FOR OPEN SPACE
 Accept
 10.1 Greenbelts
 Accept

11.0 PLANNING FOR TRANSPORTATION
 Accept
 11.1 Coordination Needed
 Accept

12.0 CLEAN WATER ACT SECTION 404 PERMITTING PROCESS
 Accept
 12.1 Purpose of the 404 Permit
 Accept
 12.2 Activities Requiring Permit
 Accept
 12.3 Who Should Obtain Permit
 Accept
 12.4 Definition of Waters of the United States
 Accept
 12.5 Pre-Application Meetings
 Accept

13.0 REFERENCES
 Accept
Photographs

Photographs PL-1—Bible Park with fully integrated drainage, flood control, recreation, and open space functions represents a partnership among engineers, landscape architects, planners and recreation professionals

Accept

Photographs PL-2—A stable channel coupled with wet detention for the outlet of a large storm sewer system provides Denver enhanced water quality in Harvard Gulch

Accept

Photographs PL-3—An engineered wetland channel can serve as a filter for low flows and yet carry the major flood event without damage

Accept

Photographs PL-4—Use of uniform design standards represents a reasonable standard of care for urban flood channels

Accept

Photographs PL-5—A wide-open waterway carries floodwater at modest depths while maintaining low velocities to inhibit erosion

Accept

Photographs PL-6—District drainage criteria are aimed at respecting the needs of safe, unimpeached traffic movement. This intersection represents a long-standing drainage problem needing a solution

Accept

Photographs PL-7—Urban stormwater detention basins can create neighborhood amenities that at the same time serve their flood control function

Accept

Photographs PL-8—Planning for storm sewers is aimed at maintaining an orderly urban area where stormwater street flow is limited to predetermined levels

Accept

Photographs PL-9—Open space, stable channels and recreation to hand-in-hand towards creating urban amenities

Accept
RAINFALL

CONTENTS

Section Page
1.0 Overview RA-
 1.1 General Design Storms Added
 1.2 Minor (2-Year) Storm Provisions Added
 1.3 Major (100-Year)-Storm Provisions Added
2.0 Rainfall Depth-Duration-Frequency Delete
 2.1 Rainfall Depth-Duration-Frequency Maps Deleted
 2.2 Rainfall Depths For Durations Between 1-and 6-hours Deleted
3.0 Design Storm Distribution For CUHP Delete
 3.1 Temporal Distribution Delete
 3.2 Adjustment to Rainfall Distribution for Watershed Size Delete
4.0 Intensity-Duration-Frequency Curves for Rational Method Amended
 4.1 Intensity-Duration-Frequency Curves for SWMM Added
5.0 Basis for Design Storm Delete
6.0 Spreadsheet Design Aids Delete
7.0 Examples Delete
 7.1 Example Computation of Point Rainfall Delete
 7.2 Example Distribution of Point Rainfall Delete
 7.3 Example Preparation of Intensity-Duration-Frequency Curve Delete
8.0 REFERENCES Delete

TABLES

Table RA-1—Storm Duration and Area Adjustment for CUHP Modeling Delete
Table RA-2—Design Storm Distributions of 1-Hour NOAA Atlas Depths Delete
Table RA-3—Area Adjustment Factors for Design Rainfall Distributions Delete
Table RA-4—Factors for Preparation of Intensity-Duration Curves
Delete
Table RA-5—CUHP Rainfall Distributions for Example 7.2
Delete
Table RA-6—Rainfall Intensity-Duration Values for a 2.6-inch, 1-Hour Point Precipitation
Delete
Table RA-7—City of Fort Collins Rainfall Intensity-Duration-Frequency Table for use with the Rational Method (5 minutes to 30 minutes)
Add
Table RA-8—City of Fort Collins Rainfall Intensity-Duration-Frequency Table for use with the Rational Method (31 minutes to 60 minutes)
Add
Table RA-9—City of Fort Collins Rainfall Intensity-Duration-Frequency Table for use with SWMM
Add

FIGURES
Figure RA-1—Rainfall Depth-Duration-Frequency: 2-Year, 1-Hour Rainfall
Delete
Figure RA-2—Rainfall Depth-Duration-Frequency: 5-Year, 1-Hour Rainfall
Delete
Figure RA-3—Rainfall Depth-Duration-Frequency: 10-Year, 1-Hour Rainfall
Delete
Figure RA-4—Rainfall Depth-Duration-Frequency: 25-Year, 1-Hour Rainfall
Delete
Figure RA-5—Rainfall Depth-Duration-Frequency: 50-Year, 1-Hour Rainfall
Delete
Figure RA-6—Rainfall Depth-Duration-Frequency: 100-Year, 1-Hour Rainfall
Delete
Figure RA-7—Rainfall Depth-Duration-Frequency: 2-Year, 6-Hour Rainfall
Delete
Figure RA-8—Rainfall Depth-Duration-Frequency: 5-Year, 6-Hour Rainfall
Delete
Figure RA-9—Rainfall Depth-Duration-Frequency: 10-Year, 6-Hour Rainfall
Delete
Figure RA-10—Rainfall Depth-Duration-Frequency: 25-Year, 6-Hour Rainfall
Delete
Figure RA-11—Rainfall Depth-Duration-Frequency: 50-Year, 6-Hour Rainfall
Delete
Figure RA-12—Rainfall Depth-Duration-Frequency: 100-Year, 6-Hour Rainfall
Delete
Figure RA-13—Rainfall Depth-Duration-Frequency: Precipitation Depth-Duration Nomograph For use East of Continental Divide
Delete
Figure RA-14—Depth-Area Adjustment Curves
Delete
Figure RA-15—Rainfall Intensity-Duration Curves
Delete
Figure RA-16—City of Fort Collins Rainfall Intensity-Duration-Frequency Curves
Add
DRAINAGE CRITERIA MANUAL (V.1, Chapter 5)

RUNOFF

CONTENTS

Section Page
1.0 OVERVIEW
Delete
 1.1 Runoff Methodologies
 Added
2.0 RATIONAL METHOD
 Accept
 2.1 Rational Formula
 Accept
 2.2 Assumptions
 Accept
 2.3 Limitations
 Accept
 2.4 Time of Concentration
 Accept
 2.4.1 Initial Flow Time
 Accept
 2.4.2 Overland Travel Time
 Accept
 2.4.3 First Design Point Time of Concentration in Urban Catchments
 Accept
 2.4.4 Minimum Time of Concentration
 Accept
 2.4.5 Common Errors in Calculating Time of Concentration
 Accept
 2.5 Intensity
 Accept
 2.6 Watershed Imperviousness
 Accept
 2.7 Runoff Coefficient
 Accept
 2.8 Rational Method Runoff Coefficients
 Added
 2.9 Composite Runoff Coefficient
 Added
 2.10 Runoff Coefficient Adjustment for Infrequent Storms
 Added
3.0 COLORADO URBAN HYDROGRAPH PROCEDURE
Delete
 3.1 Background
 Delete
 3.2 Effective Rainfall for CUHP
 Delete
 3.2.1 Pervious-Impervious Areas
 Delete
 3.2.2 Depression Losses
 Delete
 3.2.3 Infiltration
 Delete

3.3 CUHP Parameter Selection
 Delete
 3.3.1 Rainfall
 Delete
 3.3.2 Catchment Description
 Delete
 3.3.3 Catchment Delineation Criteria
 Delete
 3.3.4 Combining and Routing Sub-Catchment CUHP Hydrographs
 Delete

4.0 EPA SWMM AND HYDROGRAPH ROUTING
 Accept
 4.1 Software Description
 Accept
 4.1.1 Surface Flows and Flow Routing Features
 Accept
 4.1.2 Flow Routing Method of Choice
 Accept
 4.2 Data Preparation for the SWMM Software
 Accept
 4.2.1 Step 1-Method of Discretization
 Accept
 4.2.2 Step 2-Estimate Coefficients and Functional/Tabular Characteristic of Storage and Outlets
 Accept
 4.2.3 Step 3-Preparation of Data for Computer Input
 Accept
 4.3 Computer Modeling Practices
 Added
 4.3.1 Surface Storage, Resistance Factors, and Infiltration
 Added
 4.3.2 Pervious-Impervious Area
 Added
 4.3.3 Conveyance Element Methodology
 Added
 4.3.4 Basin Width
 Added
 4.3.5 Dynamic Flow Analysis
 Added

5.0 OTHER HYDROLOGIC METHODS
 Delete
 5.1 Published Hydrologic Information
 Delete
 5.2 Statistical Methods
 Accept

6.0 SPREADSHEETS AND OTHER SOFTWARE
 Accept

7.0 EXAMPLES
 Accept
 7.1 Rational Method Example 1
 Accept
 7.2 Rational Method Example 2
 Accept
 7.3 Effective Rainfall Example
 Accept
8.0 REFERENCES

APPENDIX A – DETAILS OF THE COLORADO URBAN HYDROGRAPH PROCEDURE (CUHP)

Tables

Table RO-1—Applicability of Hydrologic Methods
Deleted
Table RO-2—Conveyance Coefficient, Cv
Deleted
Table RO-3—Recommended Percentage Imperviousness Values
Deleted
Table RO-4—Correction Factors Ka and Kcd for Use with Equations RO-6 and RO-7
Deleted
Table RO-5—Runoff Coefficients, C
Deleted
Table RO-6—Typical Depression Losses for Various Land Covers
Deleted
Table RO-7—Recommended Horton’s Equation Parameters
Deleted
Table RO-8—Incremental infiltration Depths in Inches*
Deleted
Table RO-9—Effective Rainfall Calculations
Deleted
Table RO-A1—Example for Determination a Storm Hydrograph
Table RO-10—Rational Method minor Storm Runoff Coefficients for Zoning Classifications
Added
Table RO-11—Rational Method Runoff Coefficients for Composite Analysis
Added
Table RO-12—Rational Method Runoff Coefficients for Composite Analysis
Added
Table RO-13—SWMM Input Parameters
Added
Table RO-14—Land Use Versus Percent Imperviousness
Added

Figures

Figure RO-1—Estimate of Average overland Flow Velocity for use With the Rational Formula
Accept
Figure RO-2—Diagram of First Design Point
Accept
Figure RO-3—Watershed Imperviousness, Single-Family Residential Ranch Style Houses
Accept
Figure RO-4—Watershed Imperviousness, Single-Family Residential Split-Level Houses
Accept
Figure RO-5—Watershed Imperviousness. Single-Family Residential Two-Story Houses
Accept
Figure RO-6—Runoff Coefficient, C, vs. Watershed Percentage Imperviousness
NRCS Hydrologic Soil Group A
Accept
Figure RO-7—Runoff Coefficient, C, vs. Watershed Percentage Imperviousness
NRCS Hydrologic Soil Group B
Accept
Figure RO-8—Runoff Coefficient, C, vs. Watershed Percentage Imperviousness

NRCS Hydrologic Soil Groups C and D

Accept

Figure RO-9—Representation of Horton’s Equation

Delete

Figure RO-10—Slope Correction for natural and Grass-Lined Channels

Delete

Figure RO-A1—Example of Unit Hydrograph Shaping

Delete

Figure RO-A2—Relationship Between Ct and Imperviousness

Delete

Figure RO-A3—Relationship Between Peaking Parameter and Imperviousness

Delete

Figure RO-A4—Unit Hydrograph Widths

Delete

Figure RO-A5—Unit Hydrograph

Delete

Figure RO-A6—Runoff Flow Diagram for the CUHPF/PC Model

Delete

Figure RO-A7—Rainfall and Runoff Schematic for CUHPF/PC

Delete

Figure RO-A8—Default Values for Directly Connected Impervious Fraction (D)

Delete

Figure RO-A9—Default Values for Receiving Pervious Area Fraction (R)

Delete

Figure RO-A11—Comparison of Measured Peak Flow Rate Against Peak Flow Rates Calculated using the Post 1982 Colorado Urban Hydrograph Procedure

Delete
STREETS/INLETS/STORM SEWERS

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>ST-</td>
</tr>
<tr>
<td>1.1 Purpose</td>
<td>Accept</td>
</tr>
<tr>
<td>1.2 Urban Stormwater Collection and Conveyance System</td>
<td>Accept</td>
</tr>
<tr>
<td>1.3 Components of Urban Stormwater Collection and Conveyance Systems</td>
<td>Accept</td>
</tr>
<tr>
<td>1.4 Minor and Major Storms</td>
<td>Accept</td>
</tr>
<tr>
<td>2.0 STREET DRAINAGE</td>
<td>Accept</td>
</tr>
<tr>
<td>2.1 Street Function and Classification</td>
<td>Accept</td>
</tr>
<tr>
<td>2.2 Design Requirements</td>
<td>Amended</td>
</tr>
<tr>
<td>2.3 Hydraulic Evaluation</td>
<td>Accept</td>
</tr>
<tr>
<td>2.3.1 Curb and Gutter</td>
<td>Accept</td>
</tr>
<tr>
<td>2.3.1.1 Gutters With Uniform Cross Slopes (i.e., Where Gutter Cross Slope = Street Cross Slope)</td>
<td>Accept</td>
</tr>
<tr>
<td>2.3.1.2 Gutters With Composites Cross Slopes (i.e., Where Gutter Cross Slope ≠ Street Cross Slope)</td>
<td>Accept</td>
</tr>
<tr>
<td>2.3.1.3 Allowable Gutter Hydraulic Capacity</td>
<td>Accept</td>
</tr>
<tr>
<td>2.4 Major Storm Hydraulics</td>
<td>Accept</td>
</tr>
<tr>
<td>2.4.1 Purpose and Objectives</td>
<td>Accept</td>
</tr>
<tr>
<td>2.4.2 Street Hydraulic Capacity</td>
<td>Accept</td>
</tr>
<tr>
<td>3.0 INLETS</td>
<td>Accept</td>
</tr>
<tr>
<td>3.1 Inlet Functions, Types and Appropriate Applications</td>
<td>Accept</td>
</tr>
<tr>
<td>3.2 Design Considerations</td>
<td>Accept</td>
</tr>
<tr>
<td>3.3 Hydraulic Evaluations</td>
<td>Accept</td>
</tr>
<tr>
<td>3.3.1 Grate Inlets (On a Continuous Grade)</td>
<td>Accept</td>
</tr>
<tr>
<td>3.3.2 Curb-Opening Inlets (On a Continuous Grade)</td>
<td>Accept</td>
</tr>
<tr>
<td>3.3.3 Combination Inlets (On a Continuous Grade)</td>
<td>Accept</td>
</tr>
</tbody>
</table>
3.3.4 Slotted Inlets (On a Continuous Grade)
Accept

3.3.5 Inlets Located in Sumps
Accept

3.3.6 Inlet Clogging
Accept

3.4 Inlet Location and Spacing on Continuous Grades
Accept

3.4.1 Introduction
Accept

3.4.2 Design Considerations
Accept

3.4.3 Design Procedure
Accept

3.5 Inlet Design and Construction Standards
Added

4.0 STORM SEWERS
Accept

4.1 Introduction
Accept

4.2 Design Process, Considerations, and Constraints
Accept

4.3 Storm Sewer Hydrology
Accept

4.3.1 Peak Runoff Prediction
Accept

4.4 Storm Sewer Hydrology (Gravity Flow in Circular Conduits)
Accept

4.4.1 Flow Equations Storm Sewer Sizing
Accept

4.4.2 Energy Grade Line and Head Losses
Accept

4.4.2.1 Losses at the Downstream Manhole—Section 1 to Section 2
Accept

4.4.2.2 Losses in the Pipe, Section 2 to Section 3
Accept

4.4.2.3 Losses at the Upstream Manhole, Section 3 to Section 4
Accept

4.4.2.4 Juncture and Bend Losses at the Upstream Manhole, Section 4 to Section 1
Accept

4.4.2.5 Transitions
Accept

4.4.2.6 Curved Sewers
Accept

4.4.2.7 Losses at Storm Sewer Exit
Accept

4.5 Storm Sewer System Construction Standards
Added

5.0 SPREADSHEETS
Accept

6.0 EXAMPLES
Accept

7.0 REFERENCES
Accept

Tables
Table ST-1—Street Classification for Drainage Purposes
Accept
Table ST-2—Pavement Encroachment Standards for the Minor Storm
Accept
Table ST-3—Street Inundation Standards for the Major (i.e., 100-Year) Storm
Accept
Table ST-4—Allowable Cross-Street Flow
Amended
Table ST-5—Applicable Setting for Various Inlet Types
Accept
Table ST-6—Slash Velocity Constants for Various Types of Inlet Grates
Accept
Table ST-7—Sag Inlet Discharge Variables and Coefficients
Accept
Table ST-8—Clogging Coefficients to Convert Clogging Factor From Single to Multiple Units
Accept
Table ST-9—Bend Loss and Lateral Loss Coefficients (FHWA 1996)
Accept
Table ST-10—Head Loss Expansion Coefficients in Non-Pressure Flow (FHWA 1996)
Accept
Table ST-11—Hydrologic Parameters at Manholes
Accept
Table ST-12—Vertical Profile Information of Sewers
Accept
Table ST-13—Utility Crossing Separation for Storm Sewers
Added
Table ST-14—Granular Bedding Gradation
Added
Table ST-15—Uniformly Graded Gravel Gradation
Added
Table ST-16—Uniformly Graded Washed Rock Gradation
Added
Table ST-17—Maximum Allowable Storm Sewer Manhole Spacing
Added
Table ST-18—Storm Sewer Manhole Barrel Diameter Size
Added
Table ST-19—Structural Backfill Gradation
Added
Table ST-20—Non-Shrinkable Backfill
Added

Figures

Figure ST-1a—Typical Gutter Sections—Constant Cross Slope
Accept
Figure ST-1b—Typical Gutter Sections—Composite Cross Slope
Accept
Figure ST-2—Reduction Factor for Gutter Flow
Accept
Figure ST-3—Typical Street-Side Swale Sections—V-Shaped
Accept
Figure ST-4—Perspective Views of Grate and Curb-Opening Inlets
Accept
Figure ST-5—Curb-Opening Inlets
Accept
Figure ST-6—A Manhole-Sewer Unit
Accept

Figure ST-7—Hydraulic and Energy Grade lines
Accept

Figure ST-8—Bend Loss Coefficients
Accept

Figure ST-9—Access Hole Benching Methods
Accept

Figure ST-10—Angle of Cone for Pipe Diameter Changes
Accept

Photographs

Photograph ST-1—The critical role that streets play in urban inlet and storm sewer drainage is often not properly taken into account
Accept

Photograph ST-2—The capital costs of storm sewer construction are large, emphasizing the importance of sound design
Accept

Photograph ST-3—Gutter/street slope is a major design factor for both street and inlet capacity
Accept

Photograph ST-4—Inlets that are located in street sags and sumped can be highly efficient
Accept

Photograph ST-5—Clogging is an important consideration when designing inlets
Accept

Photograph ST-6—Field inlets frequently need maintenance
Accept
MAJOR DRAINAGE

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>MD-</td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>1.1 General</td>
<td>Accept</td>
</tr>
<tr>
<td>1.2 Types of Major Drainage Channels</td>
<td>Accept</td>
</tr>
<tr>
<td>1.3 Overview of Chapter</td>
<td>Accept</td>
</tr>
<tr>
<td>1.4 Issues in Major Drainage Planning and Engineering</td>
<td>Accept</td>
</tr>
<tr>
<td>1.5 Fluvial Geomorphology</td>
<td>Accept</td>
</tr>
<tr>
<td>1.5.1 Stream Channel Characterization</td>
<td>Accept</td>
</tr>
<tr>
<td>1.5.2 Effects of Urbanization on Stream Channels</td>
<td>Accept</td>
</tr>
<tr>
<td>1.5.3 Stable Channel Balance</td>
<td>Accept</td>
</tr>
<tr>
<td>1.5.4 References for Additional Information</td>
<td>Accept</td>
</tr>
<tr>
<td>2.0 PLANNING</td>
<td>Accept</td>
</tr>
<tr>
<td>2.1 General</td>
<td>Accept</td>
</tr>
<tr>
<td>2.2 Impacts of Urbanization and Associated Effects</td>
<td>Accept</td>
</tr>
<tr>
<td>2.3 Special Considerations for Semi-Arid Climates</td>
<td>Accept</td>
</tr>
<tr>
<td>2.4 Route Considerations</td>
<td>Accept</td>
</tr>
<tr>
<td>2.4.1 Present Flow Path</td>
<td>Accept</td>
</tr>
<tr>
<td>2.4.2 Historic Flow Path</td>
<td>Accept</td>
</tr>
<tr>
<td>2.4.3 Permitting and Regulations</td>
<td>Accept</td>
</tr>
<tr>
<td>2.4.4 Public Safety</td>
<td>Accept</td>
</tr>
<tr>
<td>2.4.5 Public Acceptance</td>
<td>Accept</td>
</tr>
<tr>
<td>2.4.6 Alternate Routes</td>
<td>Accept</td>
</tr>
<tr>
<td>2.4.7 Maintenance</td>
<td>Accept</td>
</tr>
<tr>
<td>2.4.8 Route Costs</td>
<td>Accept</td>
</tr>
<tr>
<td>2.4.9 Recreational Use Potential</td>
<td>Accept</td>
</tr>
</tbody>
</table>
2.4.10 Environmental Considerations
Accept
2.4.11 Presentation of Choice
Accept
2.4.12 Underground Conduits
Accept
2.4.13 Two-Stage Channels
Accept

2.5 Layout
Accept
2.5.1 Working Map
Accept
2.5.2 Preliminary Plan and Profile
Accept

2.6 Master Planning or Preliminary Design
Accept
2.6.1 Criteria for Final Hydrology
Accept

2.7 The Master Plan
Accept
2.7.1 Report
Accept
2.7.2 Drawing
Accept

3.0 OPEN CHANNEL DESIGN PRINCIPLES
Accept
3.1 General Open Channel Flow Hydraulics
Accept
3.1.1 Types of Flow in Open Channels
Accept
3.1.2 Roughness Coefficients
Accept
3.1.3 Flow Regime
Accept
3.1.3.1 Critical Flow
Accept
3.1.3.2 Subcritical Flow
Accept
3.1.3.3 Supercritical Flow
Accept

3.2 Preliminary Design Criteria
Accept
3.2.1 Design Velocity
Accept
3.2.2 Design Depths
Accept
3.2.3 Design Slopes
Accept
3.2.3.1 Channel Slope
Accept
3.2.3.2 Side Slopes
Accept
3.2.4 Curvature and Transitions
Accept
3.2.5 Design Discharge Freeboard
 Accept
3.2.6 Erosion Control
 Accept
3.2.7 Summary of Preliminary Design Guidance
 Accept
3.2.8 Open Channel Design
 Amended
 3.2.8.1 Natural Channels (Open Floodplain Design)
 Amended
 3.2.8.2 Open Floodway Design (Natural Channel With Floodplain Encroachment)
 Amended
 3.2.8.3 Grass-Lined Channel Design
 Amended.
3.3 Choice of Channel Type and Alignment
 Accept
 3.3.1 Types of Channels for Major Drainageways
 Accept
 3.3.2 Factors to Consider in Selection of Channel Type and Alignment
 Accept
 3.3.3 Environmental Permitting Issues
 Amended
 3.3.4 Maintenance
 Amended
3.4 Design Flows
 Accept
3.5 Choice of Channel Lining
 Accept
4.0 OPEN-CHANNEL DESIGN CRITERIA
 Accept
4.1 Grass-Lined Channels
 Accept
 4.1.1 Design Criteria
 Accept
 4.1.1.1 Design Velocity and Froude number
 Accept
 4.1.1.2 Design Depths
 Accept
 4.1.1.3 Design Slopes
 Accept
 4.1.1.4 Curvature
 Accept
 4.1.1.5 Design Discharge Freeboard
 Amended
 4.1.2 Grass and Vegetation Selection and Use
 Accept
 4.1.3 Channels Cross Sections
 Accept
 4.1.3.1 Side Slopes
 Accept
 4.1.3.2 Depth
 Accept
 4.1.3.3 Bottom Width
 Accept
4.1.3.4 Trickle and Low-Flow Channels
Accept
4.1.3.5 Outfalls Into Channel
Accept
4.1.4 Roughness Coefficients
Accept
4.1.5 Trickle and Low-Flow Channels
Accept
4.1.6 Erosion Control
Accept
4.1.6.1 Erosion at Bends
Accept
4.1.6.2 Riprap Lining of Grass-lined Channels
Accept
4.1.7 Water Surface Profile
Accept
4.1.8 Maintenance
Accept
4.1.9 Calculation Tool
Accept
4.1.10 Design Submittal Checklist
Accept
4.2 Composite Channels
Accept
4.2.1 Design Criteria
Accept
4.2.2 Design Procedure
Accept
4.2.3 Life Expectancy and Maintenance
Accept
4.2.4 Calculation Example for Wetland Bottom Channel
Accept
4.2.5 Design Submittal Checklist
Accept
4.3 Concrete-Lined Criteria
Accept
4.3.1 Design Criteria
Accept
4.3.1.1 Design Velocity and Froude Number
Accept
4.3.1.2 Design Depths
Accept
4.3.1.3 Curvature
Accept
4.3.1.4 Design Discharge Freeboard
Accept
4.3.2 Concrete Lining Specifications
Accept
4.3.2.1 Concrete Lining Section
Accept
4.3.2.2 Concrete Joints
Accept
4.3.2.3 Concrete Finish
Accept
4.3.2.4 Underdrain
Accept
4.3.3 Channel Cross Section
 Accept
 4.3.3.1 Side Slopes
 Accept
 4.3.3.2 Depths
 Accept
 4.3.3.3 Bottom Width
 Accept
 4.3.3.4 Trickle and Low-Flow Channels
 Accept
 4.3.3.5 Outfalls Into Channel
 Accept

4.3.4 Safety Requirements
 Accept

4.3.5 Calculation Tools
 Accept

4.3.6 Maintenance
 Accept

4.3.7 Design Submittal Checklist
 Accept

4.4 Riprap-Lined Channels
 Accept

4.4.1 Types of Riprap
 Accept
 4.4.1.1 Ordinary and Soil Riprap
 Accept
 4.4.1.2 Grouted Boulders
 Accept
 4.4.1.3 Wire-Enclosed Rock (Gabions)
 Accept

4.4.2 Design Criteria
 Accept
 4.4.2.1 Design Velocity
 Accept
 4.4.2.2 Design Depths
 Accept
 4.4.2.3 Riprap Sizing
 Accept
 4.4.2.4 Riprap Toes
 Accept
 4.4.2.5 Curves and Bends
 Accept
 4.4.2.6 Transitions
 Accept
 4.4.2.7 Design Discharge Freeboard
 Accept

4.4.3 Roughness Coefficient
 Accept

4.4.4 Bedding Requirements
 Accept
 4.4.4.1 Granular Bedding
 Accept
 4.4.4.2 Filter Fabric
 Accept
 4.4.4.3 Riprap Specifications and Applicability
 Added
4.4.5 Channel Cross Section
 4.4.5.1 Side Slopes
 Accept
 4.4.5.2 Depth
 Accept
 4.4.5.3 Bottom Width
 Accept
 4.4.5.4 Outfalls Into Channel
 Accept
4.4.6 Erosion Control
 Accept
4.4.7 Maintenance
 Accept
4.4.8 Calculation Example
 Accept
4.4.9 Design Submittal Checklist
 Accept
4.5 Bioengineered Channels
 Accept
 4.5.1 Components
 Accept
 4.5.2 Applications
 Accept
 4.5.3 Bioengineering Resources
 Accept
 4.5.4 Characteristics of Bioengineered Channels
 Accept
 4.5.5 Advantages of Bioengineered Channels
 Accept
 4.5.6 Technical Constraints
 Accept
 4.5.7 Design Guidelines
 Accept
4.6 Natural Channels
 Accept
4.7 Retrofitting Open-Channel Drainageways
 Accept
 4.7.1 Opportunities for Retrofitting
 Accept
 4.7.2 Objective of Retrofitting
 Accept
 4.7.3 Natural and Natural-Like Channel Creation and Restoration
 Accept
5.0 RECTANGULAR CONDUITS
 Accept
 5.1 Hydraulic Design
 Accept
 5.1.1 Entrance
 Accept
 5.1.2 Internal Pressure
 Accept
 5.1.3 Curves and Bends
 Accept
 5.1.4 Transitions
 Accept
5.1.5 Air Entrainment
Accept
5.1.6 Major Inlets
Accept
5.1.7 Sedimentation
Accept
5.2 Appurtenances
Accept
5.2.1 Energy Dissipators
Accept
5.2.2 Access Manholes
Accept
5.2.3 Vehicle Access Points
Accept
5.2.4 Safety
Accept
5.2.5 Air Venting
Accept

6.0 LARGE PIPES
Accept
6.1 Hydraulic Design
Accept
6.1.1 Entrance
Accept
6.1.2 Internal Pressure
Accept
6.1.3 Curves and Bends
Accept
6.1.4 Transitions
Accept
6.1.5 Air Entrainment and Venting
Accept
6.1.6 Major Inlets
Accept
6.2 Appurtenances
Accept
6.3 Safety
Accept

7.0 PROTECTION DOWNSTREAM OF PIPE OUTLETS
Accept
7.1 Configuration of Riprap Protection
Accept
7.2 Required Rock Size
Accept
7.3 Extent of Protection
Accept
7.4 Multiple Conduit Installations
Accept

8.0 SEDIMENT
Accept

9.0 EXAMPLES
9.1 Example MD-1: Normal Depth Calculation with Normal Worksheet
Accept
9.2 Example MD-2: Composite Section Calculations Using Composite Design Worksheet
Accept
9.3 Example MD-3: Riprap Lined Channel Calculations Using Riprap Channel Worksheet

10.0 REFERENCES

TABLES

- Table MD-1—Roughness Coefficients ("n") for Channel Design
- Table MD-2—Trapezoidal Channel Design Guidance/Criteria
- Table MD-3—Design Submittal Checklist for Grass-Lined Channel
- Table MD-4—Design Submittal Checklist for Composite Channels
- Table MD-5—Roughness Values for Concrete-Lined Channels
- Table MD-6—Design Submittal Checklist for Concrete-Lined Channel
- Table MD-7—Classification and Gradation of Ordinary Riprap
- Table MD-8—Classification of Boulders
- Table MD-10—Riprap Requirements or Channel Lining*
- Table MD-11—Gradation for Granular Bedding
- Table MD-12—Thickness Requirements for Granular Bedding
- Table MD-13—Design Submittal Checklist for Riprap-Lined Channel
- Table MD-14—Guidelines for use of Various Types of Channels
- Table MD-15—Roughness Coefficients for Large Concrete Conduits
- Table MD-16—Uniform Flow in Circular Sections Flowing Partially Full

FIGURES

- Figure MD-1—Illustration of the Stable Channel Balance Based on the Relationship Proposed By Lane (1955)
- Figure MD-2—Normal Depth for Uniform Flow in Open Channels
- Figure MD-3—Curves for Determining the Critical Depths in Open Channels
- Figure MD-4—Flow Chart for Selection Channel Type and Assessing Need for 404 Permit
- Figure MD-5—Typical Grassed Channels
- Figure MD-6—Minimum Capacity Requirements for Trickle Channels
Figure MD-7—Composite Grass-lined Channel with a Low-Flow Channel, including a Wetland Bottom Low-Flow Channel
Accept
Figure MD-8—Grass-lined Channel with a Trickle Channel
Accept
Figure MD-9a—Manning’s n vs. Depth for Low-Flow Section in a Composite Channel
Accept
Figure MD-9b—Manning’s n vs. VR for Two Retardances in Grass-Lined Channels
Accept
Figure MD-10—Composite (Wetland Bottom) Channel at Bridge or Culvert Crossing
Accept
Figure MD-11—Gradation of Ordinary Riprap
Accept
Figure MD-12—Gradation Curves for Granular Bedding
Accept
Figure MD-13a—Riprap Channel Bank Lining, Including Toe Protection
Accept
Figure MD-13b—Soul Riprap Typical Details
Accept
Figure MD-14—Filter Fabric Details
Accept
Figure MD-15—Live Willow Staking for Bare Ground and Joint Installation
Accept
Figure MD-16—Fascine in Conjunction With Jute Mesh Mat
Accept
Figure MD-17—Fiber Roll
Accept
Figure MD-18—Brush Layering with Willow Cuttings
Accept
Figure MD-19—Details for Boulder Edge Treatment of a Low-Flow Channel
Accept
Figure MD-20—Hydraulic Properties of Pipes
Accept
Figure MD-21—Riprap Erosion Protection at Circular Conduit Outlet Valid for $Q/D \leq 6.0$
Accept
Figure MD-22—Riprap Erosion Protection at Rectangular Conduit Outlet Valid for $Q/WH \leq 8.0$
Accept
Figure MD-23—Expansion Factor for Circular Conduits
Accept
Figure MD-24—Expansion Factor for Rectangular Conduits
Accept
Figure MD-25—Culvert and Pipe Outlet Erosion Protection
Accept

PHOTOGRAPHS

Photograph MD-1—An engineered wetland channel can serve as a filter for low flows and yet carry the major flood event without damage
Accept
Photograph MD-2—Well-planned major drainageways provide biological diversity, recreational opportunities, and aesthetic benefits in addition to flood conveyance
Accept
Photograph MD-3—Integrating major drainageways into neighborhoods is critical for success
Accept
Photograph MD-4—Channel degradation in an unstable channel
Accept
Photograph MD-5—Natural channel (open floodplain design) serving as a major drainageway. Note preservation of riprap vegetation and absence of floodplain encroachment through use of grade control structures to mitigate down cutting
Accept

Photograph MD-6—Engineered grass-lined major drainageway with low-flow channel with bioengineered components integrated into the design
Accept

Photograph MD-7—Composite channel
Accept

Photograph MD-8—Concrete-lined channel
Accept

Photograph MD-9—Riprap channel. Burying and revegetation of the rock (i.e., soil riprap) could make this site blend into the adjacent terrain very nicely
Accept

Photograph MD-10—Bioengineered major drainage channel using low-grade control structure provides long-term structural integrity and diverse ecology
Accept

Photograph MD-11—Bioengineered major drainageway with dense and diverse vegetation and energy dissipater
Accept

Photograph MD-12—Willow plantings and vegetation along bioengineered channel
Accept

Photograph MD-13—Integration of open water areas with major drainageways provides habitat and aesthetic benefits in additions to providing storage
Accept
HYDRAULIC STRUCTURES

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 USE OF STRUCTURES IN DRAINAGE</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>1.2 Channels Used for Boating</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>1.3 Channel Grade Control Structures</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>1.4 Wetland Channel Grade Control</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>1.5 Conduit Outlet Structures</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>1.6 Bridges</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>1.7 Transitions and Constrictions</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>1.8 Bends and Confluences</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>1.9 Rundowns</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>1.10 Energy Dissipation</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>1.11 Maintenance</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>1.12 Structure Safety and Aesthetics</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>2.0 CHANNEL GRADE CONTROL STRUCTURES (CHECK AND DROP STRUCTURES)</td>
<td></td>
</tr>
<tr>
<td>2.1 Planning for the Future</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>2.1.1 Outline of Section</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>2.1.2 Boatable Channels</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>2.1.3 Grass and Wetland Bottom Channels</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>2.1.4 Basic Approach to Drop Structures Design</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>2.2 Drop Selection</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>2.3 Detailed Hydraulic Analysis</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>2.3.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>2.3.2 Crest and Upstream Hydraulics</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>2.3.3 Water Surface profile Downstream of the Crest</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>2.3.3.1 Critical Depth Along a Drop Structures</td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td></td>
</tr>
</tbody>
</table>

TOC-HS (1)
2.3.3.2 Hydraulic Analysis
Accept

2.3.3.3 Manning’s n for Concrete, Boulders and Grouted Boulders
Accept

2.3.3.4 Avoid Low Froude Number Jumps in Grass-Lined Channels
Accept

2.3.4 Hydraulic Jump Location
Accept

2.3.5 Jump and Basin Length
Accept

2.3.6 Seepage Analysis
Accept

2.3.7 Force Analysis
Accept

2.3.7.1 Shear Stress
Accept

2.3.7.2 Buoyant Weight of Structure
Accept

2.3.7.3 Impact, Drag and Hydrodynamic Lift Forces
Accept

2.3.7.4 Turning Force
Accept

2.3.7.5 Friction
Accept

2.3.7.6 Frost Heave
Accept

2.3.7.7 Seepage Uplift Pressure
Accept

2.3.7.8 Dynamic Pressure Fluctuations
Accept

2.3.7.9 Overall Analysis
Accept

2.4 Simplified Drop Structure Designs for District’s Grass-Lined Channels
Accept

2.4.1 Introduction and Cautions
Accept

2.4.2 Applicability of Simplified Channel Drop Designs
Accept

2.4.3 Simplified Grouted Sloping Boulder Drop Design
Accept

2.4.4 Vertical Hard Basin Drops
Delete

2.5 Baffle Chute Drops
Accept

2.6 Seepage Control
Accept

2.6.1 Seepage Analysis Methods
Accept

2.6.2 Foundation/Seepage Control Systems
Accept

2.7 Simplified Minimum Design Approach for Boatable Channels
Accept

2.8 Construction Concerns: Grass-Lined Channels
Accept

2.8.1 Foundations/Seepage Control
Accept
2.8.2 Baffle Chute Construction
Accept
2.8.3 Vertical Hard Basin Construction
Delete
2.8.4 Sloping Grouted Boulder Construction
Accept
2.9 Low-Flow Check and Wetland Structures
Accept
3.1 General
Accept
3.2 Impact Stilling Basin
Accept
3.2.1 Modified Impact Basins for Smaller Outlets
Accept
3.2.2 Low-Flow Modifications
Accept
3.2.3 Multiple Conduit Installations
Accept
3.2.4 General Design Procedure for Type IV Impact Basin
Accept
3.3 Pipe Outlet Rundowns
Accept
3.3.1 Baffle Chute Rundown
Accept
3.3.2 Grouted Boulder Chute Rundown
Accept
3.4 Low Tailwater Riprap Basins at Pipe Outlets
Accept
3.4.1 General
Accept
3.4.2 Objective
Accept
3.4.3 Low Tailwater Basin Design
Accept
3.4.3.1 Finding Flow Depth and Velocity of Storm Sewer Outlet Pipe
Accept
3.4.3.2 Riprap Size
Amended
3.4.3.3 Basin Length
Accept
3.4.3.4 Basin Width
Accept
3.4.3.5 Other Design Requirements
Accept
3.5 Culvert Outlets
Accept
4.0 BRIDGES
Accept
4.1 Basic Criteria
Accept
4.1.1 Design Approach
Accept
4.1.2 Bridge Opening Freeboard
Delete
4.2 Hydraulic Analysis
Accept

TOC-HS (3)
4.2.1 Expression for Backwater
Accept
4.2.2 Backwater Coefficient
Accept
4.2.3 Effect of M and Abutment Shape (Base Curves)
Accept
4.2.4 Effect of Piers (Normal Crossings)
Accept

4.3 Design Procedure
Accept

5.0 TRANSITIONS AND CONSTRICIONS

5.1 Introduction
Accept

5.2 Transition Analysis
Accept
 5.2.1 Subcritical Transitions
 Accept
 5.2.2 Supercritical Transitions
 Accept

5.3 Constriction Analysis
Accept
 5.3.1 Constrictions With Upstream Subcritical Flow
 Accept
 5.3.2 Constrictions With Upstream Supercritical Flow
 Accept

6.0 BENDS AND CONFLUENCES

6.1 Introduction
Accept

6.2 Bends
Accept
 6.2.1 Subcritical Bends
 Accept
 6.2.2 Supercritical Bends
 Accept

6.3 Confluences
Accept
 6.3.1 Subcritical Flow Confluence Design
 Accept

7.0 RUNDOWNS
Accept

7.1 Cross Sections
Accept

7.2 Design Flow
Accept

7.3 Flow Depth
Accept

7.4 Outlet Configuration for Trickle Channel
Accept

7.5 Outlet Configuration for Wetland Channel
Accept

7.6 Grouted Boulder Rundowns
Accept

8.0 MAINTENANCE

8.1 General
Amended
8.2 Access
Accept
8.3 Maintenance Optimization
Accept

9.0 BOATABLE DROPS
9.1 Introduction
Accept
9.2 Retrofitting Existing Structures
Accept
 9.2.1 Downstream Face
 Accept
 9.2.2 Boat Chute
 Accept
 9.2.3 Sharp Edges
 Accept
 9.2.4 Barriers and Signing
 Accept
 9.2.5 Portages
 Accept
9.3 Safety
Accept

10.0 STRUCTURE AESTHETICS, SAFETY AND ENVIRONMENTAL IMPACT
10.1 Introduction
Accept
10.2 Aesthetics and Environmental Impact
Accept
10.3 Safety
Accept

11.0 CHECKLIST
Accept

12.0 REFERENCES
Accept

TABLES

Table HS-1—Non-Boatable Drop Structure Selection for 3- to 5-Foot High Drops and Flows of 0 to 15,000 cfs
Accept
Table HS-2—Suggested Approximate Manning’s Roughness Parameter at Design Discharge For Sloping Drops
Accept
Table HS-3—Nominal Limit of Maximum Pressure Fluctuation within the Hydraulic Jump (Toso, 1986)
Accept
Table HS-4—Grouted Sloping Boulder Drops: Minimum Design Criteria for Grass-Lined Channels Meeting the District’s Maximum Depth and Velocity Criteria
Accept
Table HS-5—Boulder Sizes for Various Rock Sizing Parameters
Accept
Table HS-6—Vertical Drops With Grouted Boulder Basin: Simplified Design Criteria for Small Vertical Drops in Grass-Lined Channels Meeting District Criteria
Delete
Table HS-7—Lane’s Weighted Creep: Recommended Ratios
Accept
Table HS-8—General Cutoff Technique Suitability
Accept
Table HS-9—Median (i.e., D_{50}) Size of District’s Riprap/Boulder
Amended
Table HS-10—Subcritical Transition Energy Loss Coefficients
Accept

FIGURES
Figure HS-1—Probable Range of Drop Choices and Heights
Accept
Figure HS-2—Hydraulic Analysis and Typical Forces at Sloping Boulder Drops
Accept
Figure HS-3—Recommended Manning’s n for Flow Over B18 to B42 Grouted Boulders
Accept
Figure HS-4—Coefficient of Pressure Fluctuation, C_{p}, at a Hydraulic Jump
Accept
Figure HS-5—Pressure Fluctuation Coefficient, C_{p}, Normalized for Consideration of Slope and Jump Beginning on Slope
Accept
Figure HS-6—Coefficient of Pressure Fluctuation, C_{p}, in a Jump on a USBR II or III Basin
Accept
Figure HS-7A—Grouted Sloping Boulder Drop with Trickle Channel for Stabilized Channels in Erosion Resistant Soils
Accept
Figure HS-7B—Grouted Sloping Boulder Drop With Low-Flow Channel for Stabilized Channels in Erosion Resistant Soils
Accept
Figure HS-7C—Grouted Sloping Boulder Drop for Unstable Channels in Erosive Soils
Accept
Figure HS-7D—Grouted Sloping Boulder Drop Details
Accept
Figure HS-8—Specifications and Placement Instructions for Grout in Sloping Boulder Drops
Accept
Figure HS-9—Vertical Hard Basin Drop
Delete
Figure HS-10—Vertical Drop Hydraulic System
Delete
Figure HS-11—Baffle Chute Drop Standard USBR Entrance
Accept
Figure HS-12—Baffle Chute Crest Modifications and Forces
Accept
Figure HS-13a—Control Check for Stable Floodplain – Concrete Wall
Accept
Figure HS-13b—Control Check for Stable Floodplain – Sheet Piling Type
Accept
Figure HS-14—General Design Dimensions for a USBR type VI Impact Stilling Basin
Accept
Figure HS-15—Basin Width Diagram for the USBR type VI Impact Stilling Basin
Accept
Figure HS-16a—Modified Impact Stalling Basin for Conduits 18” to 48” in Diameter
Accept
Figure HS-16b—Impact Stilling Basin for Pipes Smaller than 18” in Diameter Upstream of Forebays
Accept
Figure HS-17—Baffle Chute Pipe Outlet
Accept
Figure HS-18—Grouted Boulder Rundown
Accept
Figure HS-19—Low Tailwater Riprap basins for Storm Sewer Pipe Outlets—
Low Tailwater Basin at Pipe Outlets
Accept
Figure HS-19a—Concrete Flared End Section with Cutoff Wall for all Pipe Outlets
Accept
Figure HS-20a—Low Tailwater Riprap Basins for Storm Sewer Pipe Outlets—
Discharge and Flow Area Relationships for Circular and Rectangular Pipes
Accept
Figure HS-20b—Low Tailwater Riprap Basins for Storm Sewer Pipe Outlets—
Brink Depth for Horizontal pipe Outlets
Accept
Figure HS-20c—Low Tailwater Riprap Basins for Storm Sewer Pipe Outlets—
Riprap Selections Chart for Low Tailwater Basin at pipe Outlet
Accept
Figure HS-21—Normal Bridge Crossing Designation
Accept
Figure HS-22—Base Curves for Wingwall Abutments
Accept
Figure HS-23—Base Curves for Spillthrough Abutments
Accept
Figure HS-24—Incremental Backwater Coefficient for Pier
Accept
Figure HS-25—Transition Type
Accept
Figure HS-26—Channel Junction Definition Sketches
Accept
Figure HS-27—Rundown
Accept
Figure HS-28—Hydraulic Jump Tailwater Stages as Related to Boating Hazards
Accept

PHOTOGRAPHS

Photograph HS-1—Denver’s Harvard Gulch Flood Control Project introduced the baffle chute drop structure to urban flood control in 1966. Vegetation and time have made the structure part of the city’s urban poetry
Accept
Photograph HS-2—The Clear Creek I-25 vertical concrete drop structure was a “downing machine” until it was retrofitted by CDOT with a 10:1 downstream face. (Photograph taken before retrofit.)
Accept
Photograph HS-3—Stepped grouted sloping boulder drop structures such as in Denver’s Bible Park can be safe, aesthetic, and provide improved aquatic habit besides performing their primary hydraulic function of energy dissipation
Accept
Photograph HS-4—This grade control structure on the South Platte river was a hazard to the boating public until it was retrofitted by the CDOT. Here, a rescue is supervised by Colorado Governor Richard Lamm who was enjoying a rafting trip with friends and the Denver Water Rescue Team

Accept

Photograph HS-5—Example of stepped downstream face for a sloping boulder drop structure. Note dissipation of energy at each step for low flow

Accept

Photograph HS-6—Detail of the grouted sloping boulder drop with a trickle channel section creating the sight and sound of cascading water

Accept

Photograph HS-7—An overall view of the drop structure from the previous page is illustrated here to emphasize the opportunities available for creating an attractive urban hydraulic setting for the riprap corridor

Accept

Photograph HS-8—A vertical hard basin drop structure can be an effective tool for controlling grade, but it is not as desirable as a grouted sloping boulder drop because of safety concerns and aesthetics

Accept

Photograph HS-9—Close-up of the inside workings of a baffle chute drop after more than three decades of service

Accept

Photograph HS-10—Boatable channels of the District waterways provide enjoyment to a wide variety of citizens. The South Platte River example in this photograph provides an easily accessible boating experience

Accept

Photograph HS-11—Unprotected urban channels can experience bank erosion and degradation when established design criteria are not used. The invert of pipe used to be at invert of channel before degradation occurred

Accept

Photograph HS-12—Upstream and downstream views of a low tailwater basin in Douglas County protecting downstream wetland area. Burying and revegetation of the rock would blend the structure better with the adjacent terrain

Accept
CULVERTS

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION AND OVERVIEW</td>
<td>CU-</td>
</tr>
<tr>
<td>1.1 Required Design Information</td>
<td>Accept</td>
</tr>
<tr>
<td>1.1.1 Discharge</td>
<td>Accept</td>
</tr>
<tr>
<td>1.1.2 Head water</td>
<td>Accept</td>
</tr>
<tr>
<td>1.1.3 Tailwater</td>
<td>Accept</td>
</tr>
<tr>
<td>1.1.4 Outlet Velocity</td>
<td>Accept</td>
</tr>
<tr>
<td>2.0 CULVERT HYDRAULICS</td>
<td>Accept</td>
</tr>
<tr>
<td>2.1 Key Hydraulic Principles</td>
<td>Accept</td>
</tr>
<tr>
<td>2.1.1 Energy and Hydraulic Grade Lines</td>
<td>Accept</td>
</tr>
<tr>
<td>2.1.2 Inlet Control</td>
<td>Accept</td>
</tr>
<tr>
<td>2.1.3 Outlet Control</td>
<td>Accept</td>
</tr>
<tr>
<td>2.2 Energy Losses</td>
<td>Accept</td>
</tr>
<tr>
<td>2.2.1 Inlet Losses</td>
<td>Accept</td>
</tr>
<tr>
<td>2.2.2 Outlet Losses</td>
<td>Accept</td>
</tr>
<tr>
<td>2.2.3 Friction Losses</td>
<td>Accept</td>
</tr>
<tr>
<td>3.0 CULVERT SIZING AND DESIGN</td>
<td>Accept</td>
</tr>
<tr>
<td>3.2 Use of Capacity Charts</td>
<td>Accept</td>
</tr>
<tr>
<td>3.3 Use of Nomographs</td>
<td>Accept</td>
</tr>
<tr>
<td>3.4 Computer Applications, Including Design Spreadsheet</td>
<td>Accept</td>
</tr>
<tr>
<td>3.5 Design Considerations</td>
<td>Accept</td>
</tr>
<tr>
<td>3.5.1 Design Computation Forms</td>
<td>Accept</td>
</tr>
<tr>
<td>3.5.2 Invert Elevations</td>
<td>Accept</td>
</tr>
<tr>
<td>3.5.3 Culvert Diameter</td>
<td>Amended</td>
</tr>
<tr>
<td>3.5.4 Limited Headwater</td>
<td>Accept</td>
</tr>
</tbody>
</table>
3.5.5 Culvert Materials
Added

3.6 Culvert Outlet
Accept

3.7 Minimum Slope
Accept

4.0 CULVERT INLETS
Accept

4.1 Projecting Inlets
Accept

4.1.1 Corrugated Metal Pipe
Accept

4.1.2 Concrete Pipe
Accept

4.2 Inlets with Headwalls
Accept

4.2.1 Corrugated Metal Pipe
Accept

4.2.2 Concrete Pipe
Accept

4.2.3 Wingwalls
Accept

4.2.4 Aprons
Accept

4.3 Special Inlets
Accept

4.3.1 Corrugated Metal Pipe
Accept

4.3.2 Concrete Pipe
Accept

4.3.3 Mitered Inlets
Accept

4.3.4 Long Conduit Inlets
Accept

4.4 Improved Inlets
Accept

5.0 INLET PROTECTION
Accept

5.1 Debris Control
Accept

5.2 Buoyancy
Accept

6.0 OUTLET PROTECTION
Accept

6.1 Local Scour
Accept

6.2 General Stream Degradation
Accept

7.0 GENERAL CONSIDERATIONS
Accept

7.1 Culvert Location
Accept

7.2 Sedimentation
Accept

7.3 Fish Passage
Accept
7.4 Open Channels Inlets
Accept
7.5 Transitions
Accept
7.6 Large Stormwater Inlets
Accept
 7.6.1 Gratings
Accept
 7.6.2 Openings
Accept
 7.6.3 Headwater
Accept
7.7 Culvert Replacement
Accept
7.8 Fencing for Public Safety
Accept
8.0 TRASH/SAFETY RACKS
Accept
 8.1 Collapsible Gratings
Accept
 8.2 Upstream Trash Collectors
Accept
 8.3 Grate Specifications
Added
9.0 DESIGN EXAMPLE
Accept
 9.1 Culvert Under an Embankment
Accept
10.0 CHECKLIST
Accept
11.0 CAPACITY CHARTS AND NOMOGRAPHS
Accept
12.0 REFERENCES
Accept

Tables
Table CU-1—Inlet Coefficients For Outlet Control
Accept

Figures
Figure CU-1—Definition of Terms for Closed Conduit Flow
Accept
Figure CU-2—Definition of Terms for Open Channel Flow
Accept
Figure CU-3—Inlet Control—Unsubmerged Inlet
Accept
Figure CU-4—Inlet Control—Submerged Inlet
Accept
Figure CU-5—Outlet Control—Partially Full Conduit
Accept
Figure CU-6—Outlet Control—Full Conduit
Accept
Figure CU-7—Culvert Capacity Chart—Example
Accept
Photographs

Photographs CU-1—Public safety considerations for long culverts should be accounted for with culvert designs such as with this collapsible trash rack at a park-like location
Accept

Photographs CU-2—Culverts can be designed to provide compatible upstream conditions for desirable wetland growth
Accept

Photographs CU-3—Culverts can be integrated into the urban landscape without negative visual impact
Accept

Photographs CU-4—Public safety features such as the rack at the entrance to an irrigation ditch and the railing on the wingwalls must be considered
Accept

Photographs CU-5—Energy dissipation and outlet protection are essential to promote channel stability
Accept

Photographs CU-6—Small trash racks at culvert entrance will increase the risk if entrance plugging
Deleted
STORAGE

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 OVERVIEW</td>
<td>SO</td>
</tr>
<tr>
<td>2.0 APPLICATION OF DIFFERENT TYPES OF STORAGE</td>
<td>Accept</td>
</tr>
<tr>
<td>3.0 HYDROLOGIC AND HYDRAULIC DESIGN BASIS</td>
<td>Accept</td>
</tr>
<tr>
<td>3.1 Procedures for the Sizing of Storage Volumes</td>
<td>Accept</td>
</tr>
<tr>
<td>3.1.1 Use of Simplified On-Site Detention Sizing Procedures</td>
<td>Amended</td>
</tr>
<tr>
<td>3.1.2 Detention Pond Hydrograph Sizing Procedure</td>
<td>Amended</td>
</tr>
<tr>
<td>3.1.3 Water Quality Capture Volume in Sizing Detention Storage</td>
<td>Amended</td>
</tr>
<tr>
<td>3.2 Sizing of On-Site Detention Facilities</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.1 Maximum Allowable Unit Release Rates for On-Site Facilities</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.2 Empirical Equations for the Sizing of On-Site Detention Storage Volumes</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.3 Rational Formula-Based Modified FAA Procedure</td>
<td>Amended</td>
</tr>
<tr>
<td>3.2.4 Simplified Full-Spectrum Detention Sizing (Excess Urban Flow Control)</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.5 Excess Urban Runoff Flow Control at Regional Facilities</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.6 Multi-Level Control</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2.7 On-Site detention and UDFCD 100-year Floodplain Management Policy</td>
<td>Delete</td>
</tr>
<tr>
<td>3.3 Design Storms for Sizing Storage Volumes</td>
<td>Accept</td>
</tr>
<tr>
<td>3.3.1 Water Quality Capture Volume</td>
<td>Accept</td>
</tr>
<tr>
<td>3.3.2 Drainage and Flood Control</td>
<td>Accept</td>
</tr>
<tr>
<td>3.3.3 Spillway Sizing and Design</td>
<td>Amended</td>
</tr>
<tr>
<td>3.3.4 Retention Facilities</td>
<td>Amended</td>
</tr>
<tr>
<td>3.4 Reservoir Routing of Storm Hydrographs for Sizing of Storage Volumes</td>
<td>Amended</td>
</tr>
<tr>
<td>3.4.1 Initial Sizing</td>
<td>Accept</td>
</tr>
<tr>
<td>3.4.2 Initial Shaping</td>
<td>Accept</td>
</tr>
<tr>
<td>3.4.3 Outlet Works Design</td>
<td>Accept</td>
</tr>
</tbody>
</table>

TOC-SO (1)
3.4.3.1 Orifices
Accept
3.4.3.2 Weirs
Accept
3.4.4 Preliminary Design
Accept
3.4.5 Final Design
Accept

4.0 FINAL DESIGN CONSIDERATIONS
Accept
4.1 Storage Volume
Accept
4.2 Potential for Multiple Uses
Accept
4.3 Geometry of Storage Facilities
Amended
4.4 Embankment and Cut Slopes
Accept
4.5 Linings
Accept
4.6 Inlets
Accept
4.7 Outlet Works
Accept
4.8 Trash Racks
Amended
4.9 Vegetation
Amended
4.10 Operation and Maintenance
Amended
4.11 Access
Amended
4.12 Geotechnical Considerations
Accept
4.13 Environmental Permitting and Other Considerations
Accept
4.14 Trickle Channels in Storage Facilities
Added
4.15 Detention Ponds in Parking Areas
Added
4.16 Underground Detention
Added
4.17 Rooftop Detention
Added
4.18 On-Stream Storage Facilities
Added
4.19 Spill Control for Gas Stations and Vehicle Maintenance Facilities
Added

5.0 DISTRICT MAINTENANCE ELIGIBILITY FOR DETENTION FACILITIES
Delete

6.0 DESIGN EXAMPLES
6.1 Example—Empirical Equations Sizing of a Detention Basin
Delete
6.2 Example—Rational Method Analysis
Accept
6.3 Example—Hydrograph Procedure Preliminary Sizing

Accept

7.0 CHECKLIST
Accept

8.0 REFERENCES
Accept

Tables

Table SO-1—Maximum Unit Flow Release Rates (cfs/acre) from On-Site Detention Facilities
Delete
Table SO-2—FAA Method Calculations
Accept
Table SO-3—Detention Volume Estimate using a Hydrograph
Accept

Figures

Figure SO-1—Hydrograph Volumetric Method for Initial Basin Pre-Sizing
Accept
Figure SO-2—Typical Outlet Structure Profiles
Accept
Figure SO-3—Illustration Defining Hydraulic Head for Flow through Orifice(s)
Accept
Figure SO-4—Sharp-Crested Weirs
Accept
Figure SO-5—V-Notch Weir
Accept
Figure SO-6—Plan and Profile of an Extended Detention Basin in a Flood Control Detention Basin
Accept
Figure SO-7—Minimum Trash Rack Open Area—Extended Range
Accept
Figure SO-8—Outlet Sizing for EURV Control with 72-hour Drain Time for On-Site Detention
Delete

Photographs

Photograph SO-1—Attractive wet and dry detention facilities in commercial settings have been show to increase property value
Accept
Photograph SO-2—Dry and extended dry detention facilities can blend into the landscape, especially with the assistance of experienced landscape architects
Accept
Photograph SO-3—On-site storage facility serving town home development (in background) coupled with park
Accept
Photograph SO-4—This on-site dry detention facility (note short concrete dam) has encouraged the growth of wetland vegetation, which promotes pollutant removal in smaller runoff events
Accept

Photograph SO-5—Multipurpose detention facilities are strongly encouraged, as they often become community focal points
Accept
Photograph SO-6—Public safety is an important design consideration for detention facilities, including the potential need for safety/debris racks on outfall structures as shown in this dry pond

Accept

Photograph SO-7—This retention pond has an embankment with upstream and downstream gentle sideslopes, which promotes dam safety and multipurpose use

Accept

Photograph SO-8—Maintenance considerations must be carefully accounted for during design, with sediment accumulation a particular concern

Accept
FLOOD PROOFING

Entire Chapter Deleted

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 FLOOD PROOFING</td>
<td>FP</td>
</tr>
<tr>
<td>1.1 Definition of Flood Proofing</td>
<td></td>
</tr>
<tr>
<td>1.2 Overview of Flood-Proofing Methods</td>
<td></td>
</tr>
<tr>
<td>1.2.1Classification of Flood Proofing</td>
<td></td>
</tr>
<tr>
<td>1.2.2FEMA Recommended Methods</td>
<td></td>
</tr>
<tr>
<td>1.2 Approach of Manual Relative to Flood-Proofing Guidance</td>
<td></td>
</tr>
<tr>
<td>1.3 Regulatory Considerations</td>
<td></td>
</tr>
<tr>
<td>1.4 Flood Proofing In the Context of Overall Floodplain Management</td>
<td></td>
</tr>
<tr>
<td>2.0 WHEN TO FLOOD PROOF</td>
<td></td>
</tr>
<tr>
<td>2.1 How Flooding Can Damage Structures</td>
<td></td>
</tr>
<tr>
<td>2.1.1 Depth/Elevation of Flooding</td>
<td></td>
</tr>
<tr>
<td>2.1.2 Flow Velocity</td>
<td></td>
</tr>
<tr>
<td>2.1.3 Flood Frequency</td>
<td></td>
</tr>
<tr>
<td>2.1.4 Rate of Rise and Rate of Fall</td>
<td></td>
</tr>
<tr>
<td>2.1.5 Duration</td>
<td></td>
</tr>
<tr>
<td>2.1.6 Debris Impact</td>
<td></td>
</tr>
<tr>
<td>2.2 When Flood Proofing is Not Appropriate</td>
<td></td>
</tr>
<tr>
<td>2.3 Typical Causes of Flooding Problems</td>
<td></td>
</tr>
<tr>
<td>2.3.1Inadequate Street Conveyance</td>
<td></td>
</tr>
<tr>
<td>2.3.2Inadequate Storm Sewer Conveyance</td>
<td></td>
</tr>
<tr>
<td>2.3.3Inadequate Drainage Channel Conveyance</td>
<td></td>
</tr>
<tr>
<td>2.3.4Sewage Backup</td>
<td></td>
</tr>
<tr>
<td>3.0 FLOOD PROOFING METHODS</td>
<td></td>
</tr>
<tr>
<td>3.1 Overview of Six Methods Identified by FEMA</td>
<td></td>
</tr>
<tr>
<td>3.1.1Elevation</td>
<td></td>
</tr>
<tr>
<td>3.1.2Wet Flood Proofing</td>
<td></td>
</tr>
<tr>
<td>3.1.3Dry Flood Proofing</td>
<td></td>
</tr>
<tr>
<td>3.1.4Relocation</td>
<td></td>
</tr>
<tr>
<td>3.1.5Levees and Floodwalls</td>
<td></td>
</tr>
<tr>
<td>3.1.6Demolition</td>
<td></td>
</tr>
<tr>
<td>3.2 Engineering Aspects</td>
<td></td>
</tr>
<tr>
<td>3.2.1Analysis of Flood Hazards</td>
<td></td>
</tr>
<tr>
<td>3.2.2Site Characteristics</td>
<td></td>
</tr>
<tr>
<td>3.2.3Building Characteristics</td>
<td></td>
</tr>
<tr>
<td>3.3 Selection of Flood-Proofing Techniques</td>
<td></td>
</tr>
<tr>
<td>3.3.1Regulatory Considerations</td>
<td></td>
</tr>
<tr>
<td>3.3.2Appearance</td>
<td></td>
</tr>
<tr>
<td>3.3.3Accessibility</td>
<td></td>
</tr>
<tr>
<td>3.3.4Human Intervention Required</td>
<td></td>
</tr>
<tr>
<td>3.3.5Benefit/Cost Analysis</td>
<td></td>
</tr>
<tr>
<td>3.3.6Other 20</td>
<td></td>
</tr>
<tr>
<td>4.0 PROVIDING ASSISTANCE TO PROPERTY OWNERS</td>
<td></td>
</tr>
<tr>
<td>4.1 Decision Making Process for Property Owners</td>
<td></td>
</tr>
<tr>
<td>4.1.1Determine Flood Hazards</td>
<td></td>
</tr>
<tr>
<td>4.1.2Inspect Structure</td>
<td></td>
</tr>
<tr>
<td>4.1.3Contact Local Officials</td>
<td></td>
</tr>
<tr>
<td>4.1.4Consult With Professionals</td>
<td></td>
</tr>
</tbody>
</table>
4.2 Potential Sources of Financial Assistance at Federal, State, and Local Levels

5.0 REFERENCES

Tables

Table FP-1—Advantages and Disadvantages of Elevation
Table FP-2—Advantages and Disadvantages of Wet Flood Proofing
Table FP-3—Advantages and Disadvantages of Dry Flood Proofing
Table FP-4—Advantages and Disadvantages of Relocation
Table FP-5—Advantages and Disadvantages of Levees and Floodwalls
Table FP-6—Requirements for Contractor and Design Professional Services

Figures

Figure FP-1—Schematic Representation of Flood Depth and Flood Elevation
Figure FP-2—Hydrostatic Pressure Diagram With Dry Flood Proofing
Figure FP-3—Hydrostatic Pressure Diagram With Wet Flood Proofing
Figure FP-4—Example of a Structure Elevated on Continuous Foundation Walls
Figure FP-5—Example of a Building With a Wet Flood-Proofed Subgrade Basement
Figure FP-6—Example of a Dry Flood-Proofed House
Figure FP-7—Example of Levee and Floodwall Protection
Figure FP-8—Example of a Low Point of Entry Survey
REVEGETATION

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>RV-</td>
</tr>
<tr>
<td>2.0 SCOPE OF THIS CHAPTER AND RELATION TO OTHER RELEVANT DOCUMENTS</td>
<td>Accept</td>
</tr>
<tr>
<td>3.0 GENERAL GUIDELINES FOR REVEGETATION</td>
<td>Accepted</td>
</tr>
<tr>
<td>3.1 Plant Materials</td>
<td>Accepted</td>
</tr>
<tr>
<td>3.1.1 Cattail Plantings</td>
<td>Added</td>
</tr>
<tr>
<td>3.2 Site Preparation</td>
<td>Accepted</td>
</tr>
<tr>
<td>3.3 Seeding and Planting</td>
<td>Amended</td>
</tr>
<tr>
<td>3.4 Maintenance</td>
<td>Amended</td>
</tr>
<tr>
<td>4.0 PREPARATION OF A PLANTING PLAN</td>
<td>Accepted</td>
</tr>
<tr>
<td>4.1 General</td>
<td>Accepted</td>
</tr>
<tr>
<td>4.2 Soil Amendments</td>
<td>Amended</td>
</tr>
<tr>
<td>4.2.1 Humate Conditioner</td>
<td>Deleted</td>
</tr>
<tr>
<td>4.2.2 Biosol</td>
<td>Deleted</td>
</tr>
<tr>
<td>4.3 Recommended Seed Mixes</td>
<td>Accepted</td>
</tr>
<tr>
<td>4.4 Trees, Shrubs and Wetland Plantings</td>
<td>Accepted</td>
</tr>
<tr>
<td>4.5 Mulching</td>
<td>Amended</td>
</tr>
<tr>
<td>4.6 Bioengineering</td>
<td>Accepted</td>
</tr>
<tr>
<td>4.7 Collection of Live Stakes, Willow Cuttings, an Poles</td>
<td>Accepted</td>
</tr>
<tr>
<td>4.7.1 Harvest Procedure</td>
<td>Accepted</td>
</tr>
<tr>
<td>4.7.2 Installation</td>
<td>Accepted</td>
</tr>
<tr>
<td>5.0 POST-CONSTRUCTION MONITORING</td>
<td>Accepted</td>
</tr>
<tr>
<td>5.1 Land Disturbing Activity and Security</td>
<td>Added</td>
</tr>
<tr>
<td>5.2 Warranty</td>
<td>Added</td>
</tr>
</tbody>
</table>
6.0 REFERENCES
Accept

Tables
Table RV-1—Recommended Seed Mix for High Water Table Conditions
Amended
Table RV-2—Recommended Seed Mix for Transition Areas
Amended
Table RV-3—Recommended Seed Mix for Alkali Soils
Amended
Table RV-4—Recommended Seed Mix for Loamy Soils
Amended
Table RV-5—Recommended Seed Mix for Sandy Soils
Amended
Table RV-6—Recommended Seed Mix for Clay Soils
Amended
Table RV-7—Wildflower Mix (to be seeded with grass seed mix)
Deleted
Table RV-8—Recommended Shrubs and Trees
Accept
Table RV-9—Recommended Plants for Constructed Wetlands and Retention Pond Shelf
Accept

Figures
Figure RV-1—Revegetation Process Chart
Accept
Figure RV-2—Tree Planting Details
Accept
Figure RV-3—Shrub Planting Details
Accept
Figure RV-4—Single Willow Stake Detail for Use in Granular Soils With Available Groundwater
Accept
Figure RV-5—Willow Bundling Detail
Accept
Figure RV-6—Cottonwood Poling Details
Accept
DESIGN EXAMPLES

Entire Chapter and Section Deleted

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>2.0</td>
<td>CASE STUDY—STAPLETON REDEVELOPMENT</td>
</tr>
<tr>
<td>2.1</td>
<td>Project Setting</td>
</tr>
<tr>
<td>2.2</td>
<td>Project Objectives</td>
</tr>
<tr>
<td>2.3</td>
<td>Hydrologic Evaluation For Detention Pond Sizing</td>
</tr>
<tr>
<td>2.3.1</td>
<td>UHP and UDSWM</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Rational Method Hydrology</td>
</tr>
<tr>
<td>2.3.3</td>
<td>FAA Method</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Denver Regression Equation</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Comparison of the Sizing Methodologies</td>
</tr>
<tr>
<td>2.4</td>
<td>Detention Pond Outlet Configuration</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Stage-Storage Relationships</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Water Quality Volume Requirements</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Final Pond Outlet Configuration</td>
</tr>
<tr>
<td>2.5</td>
<td>Hydraulic Analysis And Capacity Verification Of The Existing Outfall</td>
</tr>
<tr>
<td>2.6</td>
<td>Local Storm Sewer Design</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Determination of Allowable Street Capacity</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Determination of Inlet Hydrology</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Inlet Capacity Calculations</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Street and Storm Sewer Conveyance Computations</td>
</tr>
<tr>
<td>3.0</td>
<td>CASE STUDY—WILLOW CREEK</td>
</tr>
<tr>
<td>3.1</td>
<td>Design</td>
</tr>
<tr>
<td>3.2</td>
<td>Criteria</td>
</tr>
<tr>
<td>3.3</td>
<td>Construction</td>
</tr>
<tr>
<td>3.4</td>
<td>Success</td>
</tr>
<tr>
<td>4.0</td>
<td>CASE STUDY—ROCK CREEK</td>
</tr>
<tr>
<td>5.0</td>
<td>CASE STUDY—SAND CREEK</td>
</tr>
<tr>
<td>5.1</td>
<td>Design</td>
</tr>
<tr>
<td>5.2</td>
<td>Criteria</td>
</tr>
<tr>
<td>5.3</td>
<td>Construction</td>
</tr>
<tr>
<td>5.4</td>
<td>Success</td>
</tr>
<tr>
<td>6.0</td>
<td>CASE STUDY—GOLDSMITH GULCH</td>
</tr>
<tr>
<td>6.1</td>
<td>Design</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Channel Reaches</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Channel Reaches</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Drop Structures</td>
</tr>
<tr>
<td>6.2</td>
<td>Criteria</td>
</tr>
<tr>
<td>6.3</td>
<td>Construction</td>
</tr>
<tr>
<td>6.4</td>
<td>Success</td>
</tr>
<tr>
<td>7.0</td>
<td>CASE STUDY—GREENWOOD GULCH</td>
</tr>
<tr>
<td>7.1</td>
<td>Design</td>
</tr>
<tr>
<td>7.2</td>
<td>Criteria</td>
</tr>
<tr>
<td>7.3</td>
<td>Construction</td>
</tr>
<tr>
<td>7.4</td>
<td>Success</td>
</tr>
<tr>
<td>8.0</td>
<td>CASE STUDY—LENA GULCH DROP STRUCTURE</td>
</tr>
<tr>
<td>8.1</td>
<td>Background</td>
</tr>
<tr>
<td>8.2</td>
<td>Design Consideration</td>
</tr>
<tr>
<td>8.3</td>
<td>Construction</td>
</tr>
</tbody>
</table>

TOC-DE (1)
8.4 Conclusion

Tables

Table DE-1—List of Design Examples

DESIGN EXAMPLES-PART 2

Entire Section Deleted

CONTENTS

Section Page
2.0 CASE STUDY-STAPLETON REDEVELOPMENT DE
2.1 Project Setting
2.2 Project Objectives
2.3 Hydrologic Evaluation For Detention Pond Sizing
 2.3.1 CUHP and UDSWM
 2.3.2 Rational Method Hydrology
 2.3.3 FAA Method
 2.3.4 Denver Regression Equation
 2.3.5 Comparison of the Sizing Methodologies
2.4 Detention Pond Outlet Configuration
 2.4.1 Stage-Storage Relationships
 2.4.2 Water Quality Volume Requirements
 2.4.3 Final Pond Outlet Configuration
2.5 Hydraulic Analysis And Capacity Verification Of The Existing Outfall
2.6 Local Storm Sewer Design
 2.6.1 Determination of Allowable Street Capacity
 2.6.2 Determination of Inlet Hydrology
 2.6.3 Inlet Capacity Calculations
 2.6.4 Street and Storm Sewer Conveyance Computations

Tables for Section 2

Table 1—CUHP and UDSWM Input
Table 2—CUHP and UDSWM Modeling Results
Table 3—FAA Method Input Data
Table 4—Detention Volume
Table 5—Summary Comparison of Sizing Methodologies
Table 6—Stapleton East-West Detention pond Cumulative Volume Analysis

Figures for Section 2

Figure 1—Stapleton Redevelopment Drainage Map
Figure 2—Stapleton Redevelopment Drainage Catchment Map
Figure 3—Detention Pond Inflow/Outflow Hygrographs
Figure 4 & 5—Area-Weighting for Runoff Coefficient Calculation
Figure 6 and 7—Calculation of a Peak Runoff Using Rational Method
Figure 8 and 9—Detention Volume by Modified FAA Method
Figure 10—10 Year Modified FAA Method
Figure 11—100-Year Modified FAA
Figure 12—Stapleton Redevelopment Detention Pond Detail
Figure 13—Stage-Storage Curve Stapleton East-West Linear Park Detention Pond
Figure 14—Design Procedure For Extended Detention Basin Sedimentation Facility
Figure 15—Flow Capacity of a Riser (Inlet Control)
Figure 16—Collection Capacity of Vertical Orifice (Inlet Control)
Figure 17—Collection Capacity of Horizontal Orifice (Inlet Control)
Figure 18—Detention Pond Outlet
Figure 19—54” Pipe Outfall Profile
Figure 20—Hydraulic Design of Storm Sewer Systems
Figure 21—Normal Flow Analysis – Trapezoidal Channel
Figure 22—Sub-Basin Hydrology Analysis Detail
Figure 23—Storm Infrastructure Detail
Figure 24—Gutter Stormwater Conveyance Capacity for Initial Event
Figure 25—Gutter Stormwater Conveyance Capacity for Major Event
Figure 26—Determination Of Design Peak Flow On The Street
Figure 27—Gutter Conveyance Capacity
Figure 28—Curb Opening Inlet In A Swamp
Figure 29—Storm Drainage System Computation Form –2 Year
Figure 30—Storm Drainage System Computation Form—100 Year

DESIGN EXAMPLES—PART 3
Entire Section Deleted

CONTENTS

Section Page
3.0 CASE STUDY—WILLOW CREEK
 3.1 Design
 3.2 Criteria
 3.3 Construction
 3.4 Success

Figure for Section 3
Figure 1—Location Map
Figure 2—Channel Relocation Plan
Figure 3—Bioengineering and Landscape Plan
Figure 4—Low-Flow Channel Stabilization
Figure 5—Fill Slop stabilization Option A
Figure 6—Biolog Installation Detail
Figure 7—Typical Channel Cross Section and Channel Edging Detail
Figure 8—Brush Layering Detail, Wrapped Soil Lift Detail, and Full Slope Cross Section

DESIGN EXAMPLES—SECTION 4
Entire Section Deleted

CONTENTS

Section Page
4.0 CASE STUDY—ROCK CREEK

Figures for Section 4
Figure 1—Flor Storage Facility Plan View
Figure 2—Typical Pond Edge Adjacent to Community Ditch
Figure 3—Typical Embankment Crest
Figure 4—Typical Pond Edge Adjacent to Filing No. 13
Figure 5—Typical Clay Cutoff Trench

TOC-DE (3)
Figure 6—Profile Pond Outlet Works
Figure 7—Plan Drop Box
Figure 8—Section Drop Box
Figure 9—Plan 78” RCP Outlet
Figure 10—Section 78” RCP Outlet
Figure 11—Rock Creek Flor Storage and Landscape Plan
Figure 12—Landscape Plan Construction Notes and Plant Legend
Figure 13—Planting and Trail Details
Figure 14—Grouted Boulder Drop Structures
Figure 15—LB3 Channel Profile
Figure 16—Typical Drop Structure
Figure 17—Grout Cutoff Section
Figure 18—Drop Structure Profile
Figure 19—Typical Drop Basin Section and Sill
Figure 20—Typical Drop Face Section
Figure 21—Drop Structure Measurement Table
Figure 22—LB3 Channel Plan
Figure 23—Typical Wetland Channel Section and LB3 Channel Profile
Figure 24—Check Structure Plan
Figure 25—Check Structure Profile
Figure 26—Check Structure Layout Table
Figure 27—Check Structure Details
Figure 28—Stream Stabilization Plan
Figure 29—Grouted Boulder Check Structure with Low-Water Crossing Site Plan
Figure 30— Typical Stream Stabilization Detail
Figure 31—Stream Stabilization Site Plan

DESIGN EXAMPLES—PART 5
Entire Section Deleted

CONTENTS

Section Page

5.0 CASE STUDY—SAND CREEK DE-
 5.1 Design 5
 5.2 Criteria 2
 5.3 Construction 3
 5.4 Success 4

Figures for Section 5

1 Location Map
2 Drop Structures
3 Double Boulder Terrace
4 Double Boulder Terrace With Buried Riprap Revetment
5 Willow Log Toe With Willow Wattle
6 Willow Wattle
7 Willow Log Construction
DESIGN EXAMPLES—PART 6

Entire Section Deleted

CONTENTS

Section	Page
6.0	CASE STUDY—GOLDSMITH GULCH
6.1	Design
6.1.1	Channel Reaches
6.1.2	Channel Reaches
6.1.3	Drop Structures
6.2	Criteria
6.3	Construction
6.4	Success

Figures for Section 6

Figure 1—Location and Vicinity Map
Figure 2—Lower Channel Reach
Figure 3—Middle Channel Reach
Figure 4—Upper Channel Reach
Figure 5—Typical Section for Areas of Wetland Development

DESIGN EXAMPLES—PART 7

Entire Section Deleted

CONTENTS

Section	Page
7.0	CASE STUDY—GREENWOOD GULCH
7.1	Design
7.2	Criteria
7.3	Construction
7.4	Success

Figures for Section 7

Figure 1—Location and Vicinity Maps
Figure 2—Urbanization of Greenwood Gulch
Figure 3—Large Boulder Drop Structure
Figure 4—Large Boulder Drop Structure
Figure 5—Plan and Profile Upstream of Holly Street
Figure 6—Landscape Plan Upstream of Holly Street
Figure 7—Holly Street Bridge
Figure 8—Lower Drop Structure Downstream of Holly Street
Figure 9—Downstream of Holly Street Channel Cross Sections
Figure 10—Landscape Plan Downstream of Holly Street
Figure 11—Large Boulder Drop Above Highline Canal

TOC-DE (5)
DESIGN EXAMPLES—PART 8

Entire Section Deleted

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>DE-1</td>
</tr>
</tbody>
</table>

CASE STUDY—LENA GULCH DROP STRUCTURE

- **8.1** Background
- **8.2** Design Considerations
- **8.3** Construction
- **8.4** Conclusion

Figures for Section 8
- Figure 1—Plan
- Figure 2—Profile
- Figure 3—Planted Grouted Boulders
PREFACE

CONTENTS

Section

1.0 ACKNOWLEDGEMENTS
Accept

2.0 PURPOSE
Accept

3.0 OVERVIEW
Accept

4.0 REVISIONS TO USDCM VOLUME 3
Accept

5.0 ACRONYMS AND ABBREVIATIONS
Accept
STORMWATER MANAGEMENT AND PLANNING

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>SMP-1</td>
</tr>
<tr>
<td>2.0 URBAN STORMWATER CHARACTERISTICS</td>
<td>Accept</td>
</tr>
<tr>
<td>3.0 STORMWATER MANAGEMENT REQUIREMENTS UNDER THE CLEAN WATER ACT</td>
<td>Accept</td>
</tr>
<tr>
<td>3.1 Clean Water Act Basics</td>
<td>Accept</td>
</tr>
<tr>
<td>3.2 Colorado’s Stormwater Permitting Program</td>
<td>Accept</td>
</tr>
<tr>
<td>3.2.1 Construction Site Stormwater Runoff Control</td>
<td>Accept</td>
</tr>
<tr>
<td>3.2.2 Post-Construction Stormwater Management</td>
<td>Accept</td>
</tr>
<tr>
<td>3.2.3 Pollution Prevention/Good Housekeeping</td>
<td>Accept</td>
</tr>
<tr>
<td>3.3 Total Maximum Daily Loads and Stormwater Management</td>
<td>Accept</td>
</tr>
<tr>
<td>4.0 FOUR STEP PROCESS TO MINIMIZE ADVERSE IMPACTS OF URBANIZATION</td>
<td>Accept</td>
</tr>
<tr>
<td>4.1 Step 1. Employ Runoff Reduction Practices</td>
<td>Accept</td>
</tr>
<tr>
<td>4.2 Step 2. Implement BMPs That Provide a Water Quality Capture Volume with Slow Release</td>
<td>Accept</td>
</tr>
<tr>
<td>4.3 Step 3. Stabilize Drainageways</td>
<td>Accept</td>
</tr>
<tr>
<td>4.4 Step 4. Implement Site Specific and Other Source Control BMPs</td>
<td>Accept</td>
</tr>
<tr>
<td>5.0 ONSITE, SUBREGIONAL AND REGIONAL STORMWATER MANAGEMENT</td>
<td>Accept</td>
</tr>
<tr>
<td>6.0 CONCLUSION</td>
<td>Accept</td>
</tr>
<tr>
<td>7.0 REFERENCES</td>
<td>Accept</td>
</tr>
</tbody>
</table>

Figures

- Figure 1-1 Physical Effects of Urbanization on Streams and Habitat
 - Accept
- Figures 1-2 The Four Step Process for Stormwater Quality Management
 - Accept
Tables

Table 1-1 Common Urban Runoff Pollutant Sources
Accept
Table 1-2 Event Mean Concentrations (mg/L) of Constituents in Denver Metropolitan Area Runoff
Accept
BMP SELECTION

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 BMP SELECTION</td>
<td>BS-</td>
</tr>
<tr>
<td>1.1 Physical Site Characteristics</td>
<td>Accept</td>
</tr>
<tr>
<td>1.2 Space Constraints</td>
<td>Accept</td>
</tr>
<tr>
<td>1.3 Targeted Pollutants and BMP Processes</td>
<td>Accept</td>
</tr>
<tr>
<td>1.4 Storage-Based Versus Conveyance-Based</td>
<td>Accept</td>
</tr>
<tr>
<td>1.5 Volume Reduction</td>
<td>Accept</td>
</tr>
<tr>
<td>1.6 Pretreatment</td>
<td>Accept</td>
</tr>
<tr>
<td>1.7 Treatment Train</td>
<td>Accept</td>
</tr>
<tr>
<td>1.8 Online Versus Offline Facility Locations</td>
<td>Accept</td>
</tr>
<tr>
<td>1.9 Integration with Flood Control</td>
<td>Amended</td>
</tr>
<tr>
<td>1.9.1 Sedimentation BMPs</td>
<td>Amended</td>
</tr>
<tr>
<td>1.9.2 Infiltration/Filtration BMPs</td>
<td>Amended</td>
</tr>
<tr>
<td>1.10 Land Use, Compatibility with Surroundings, and Safety</td>
<td>Amended</td>
</tr>
<tr>
<td>1.11 Maintenance and Sustainability</td>
<td>Accept</td>
</tr>
<tr>
<td>1.12 Costs</td>
<td>Accept</td>
</tr>
<tr>
<td>2.0 BMP SELECTION TOOL</td>
<td>Accept</td>
</tr>
<tr>
<td>3.0 LIFE CYCLE COST AND BMP PERFORMANCE TOOL</td>
<td>Accept</td>
</tr>
<tr>
<td>3.1 BMP Whole Life Costs</td>
<td>Accept</td>
</tr>
<tr>
<td>3.2 BMP Performance</td>
<td>Accept</td>
</tr>
<tr>
<td>3.3 Cost Effectiveness</td>
<td>Accept</td>
</tr>
<tr>
<td>4.0 CONCLUSION</td>
<td>Accept</td>
</tr>
<tr>
<td>5.0 REFERENCES</td>
<td>Accept</td>
</tr>
</tbody>
</table>
DRAINAGE CRITERIA MANUAL (V.3, Chapter 2) BMP SELECTION

Figures

Figure 2-1 BMP Decision Tree for Highly Urbanized Sites
Accept
Figure 2-2 BMP Decision Tree for Conventional Development Sites
Accept
Figure 2-3 BMP Decision Tree for Linear Construction in Urbanized Areas
Accept

Tables

Table 2-1 Primary, Secondary and Incidental Treatment Process provided by BMP’s
Accept
Table 2-2 BMP Effluent EMC’s (Source: International Stormwater BMP Database, August 2010)
Accept
CALCULATING THE WQCV AND VOLUME REDUCTION

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>WQCV-</td>
</tr>
<tr>
<td>2.0 HYDROLOGIC BASIS OF THE WQCV</td>
<td></td>
</tr>
<tr>
<td>2.1 Development of the WQCV</td>
<td>Accept</td>
</tr>
<tr>
<td>2.2 Optimizing the Chapter Volume</td>
<td>Accept</td>
</tr>
<tr>
<td>2.3 Attenuation of the WQCV (BMP Drain Time)</td>
<td>Accept</td>
</tr>
<tr>
<td>2.4 Excess Urban Runoff Volume (EURV) and Full Spectrum Detention</td>
<td>Deleted</td>
</tr>
<tr>
<td>3.0 CALCULATION OF THE WQVC</td>
<td>Accept</td>
</tr>
<tr>
<td>3.1 Low Impact Development Criteria</td>
<td>Added</td>
</tr>
<tr>
<td>4.0 QUANTIFYING VOLUME REDUCTION</td>
<td>Accept</td>
</tr>
<tr>
<td>4.1 Conceptual Model for Volume Reduction BMPs—Cascading Planes</td>
<td>Accept</td>
</tr>
<tr>
<td>4.2 Watershed-level Volume Reduction Method</td>
<td>Amended</td>
</tr>
<tr>
<td>4.3 Site-level Volume Reduction Methods</td>
<td>Accept</td>
</tr>
<tr>
<td>4.3.1 SWMM Modeling Using Cascading Planes</td>
<td>Amended</td>
</tr>
<tr>
<td>4.3.2 IRF Charts and Spreadsheet</td>
<td>Accept</td>
</tr>
<tr>
<td>4.4 Other Types of Credits for Volume Reduction BMPs/LID</td>
<td>Deleted</td>
</tr>
<tr>
<td>5.0 EXAMPLES</td>
<td>Accept</td>
</tr>
<tr>
<td>5.1 Calculation of the WQCV</td>
<td>Accept</td>
</tr>
<tr>
<td>5.2 Volume Reduction Calculations for Storage-based Approach</td>
<td>Accept</td>
</tr>
<tr>
<td>5.3 Effective Imperviousness Spreadsheet</td>
<td>Accept</td>
</tr>
<tr>
<td>6.0 CONCLUSION</td>
<td>Accept</td>
</tr>
<tr>
<td>7.0 REFERENCES</td>
<td>Accept</td>
</tr>
</tbody>
</table>

Figures

- **Figure 3-1** Map of the Average Runoff Producing Storm’s Precipitation Depth in the United States
Accept
Figure 3-2 Water Quality Capture Volume (WQCV) Based on BMP Drain Time
Accept
Figure 3-3 Watershed Imperviousness, Single Family Residential Ranch Style Houses
Figure 3-4 Watershed Imperviousness, Single Family Residential Split-Level Houses
Figure 3-5 Watershed Imperviousness, Single Family Residential Two-Story Houses
Figure 3-6 Four Component Land Use
Figure 3-7 Effective Imperviousness Adjustment for Level 1 MDCIA
Figure 3-8 Effective Imperviousness Adjustment for Level 2 MDCIA
Figure 3-9 Conveyance-based Imperviousness Reduction Factor
Figure 3-10 Storage-based imperviousness Reduction Factor
Figure 3-11 Colorado Green Development DCIA, UIA, RPA, and SPA
Figure 3-12 Colorado Green Precipitation Input Screen Shoot
Figure 3-13 Colorado Green Area and Infiltration Input Screen Shot
Figure 3-14 Colorado Green Calculated Output Screen Shot
Figure 3-15 Colorado Green imperviousness Reduction Factor Volume-based Lookup
Figure 3-16 Colorado Green IRF Conveyance-based Lookup

Tables
Table 3-1 Number of Rainfall Events in the Denver Area
Table 3-2 Drain Time Coefficients for WQCV Calculations
Table 3-3 Infiltration Rates (f) for IRF Calculations
Treatment BMPs

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 OVERVIEW</td>
<td>TB-1</td>
</tr>
<tr>
<td>2.0 Treatment BMP Fact Sheets</td>
<td>TB-2</td>
</tr>
<tr>
<td>3.0 References</td>
<td>TB-3</td>
</tr>
</tbody>
</table>

Treatment BMP Fact Sheets

- **T-1** Grass Buffer
- **T-2** Grass Swale
- **T-3** Bioretention (Rain Garden or Porous Landscape Detention)
- **T-4** Green Roof
- **T-5** Extended detention Basin (EDB)
- **T-6** Sand Filter
- **T-7** Wet Pond
- **T-8** Constructed Wetland Pond
- **T-9** Constructed Wetland Channel
- **T-10** Permeable Pavements:
 - **T-10.1** Permeable Interlocking Concrete Pavements (PICP)
 - **T-10.2** Concrete Grid Pavement
 - **T-10.3** Pervious Concrete
 - **T-10.4** Porous Gravel Pavement
 - **T-10.5** Reinforced Grass Pavement
- **T-11** Underground BMPs
- **T-12** Outlet Structures

Tables

- **Table 4.1.** General Overview of Treatment BMPs Included in Volume 3
- **Table EDB-4.** EDB Component Criteria

TOC-TB (1)
Table UG-1 Field Monitoring Criteria for Evaluation of Proprietary Underground BMPs
Deleted
Table OS-4 Summary of Outlet Structure Details and Use
Amended

Figures:
Figure EDB-3 Extended Detention Basin
Amended
Figure OS-2 Typical Outlet Structure for Full Spectrum Detention
Deleted
Figure OS-3 Typical Outlet Structure for WQCV Treatment and Attenuation
Amended
Figure OS-4 Orifice Plate and Trash Rack
Amended
Figure OS-5 Typical Outlet Structure with Circular Orifice Plate
Amended
Figure OS-6 Typical Outlet Structure with Rectangular Orifice Plate
Amended
Figure OS-7 Full Spectrum Detention Outlet Structure
Deleted
Figure OS-8 WQCV Outlet Structure for 5-acre Impervious Area or Less
Amended
Figure OS-9 City of Fort Collins Water Quality Outlet Structure Details
Added
SOURCE CONTROL BMP’S

CONTENTS

Section Page
1.0 INTRODUCTION
 Deleted
2.0 STRUCTURAL SOURCE CONTROLS
 Amended
3.0 PROCEDURAL SOURCE CONTROL BMPs
 Deleted
 3.1 Municipal Operations
 3.2 Commercial and Industrial Operations
 3.3 Residential Activities
4.0 COMBINING SOURCE CONTROL BMPs TO TARGET POLLUTANTS OF CONCERN
 Deleted
5.0 REFERENCES
 Deleted

SOURCE CONTROL BMP FACT SHEETS
 Deleted
 S-1 Covering Outdoor Storage and Handling Areas
 Deleted
 S-2 Spill Prevention, Containment and Control
 Deleted
 S-3 Disposal of Household Waste
 Deleted
 S-4 Illicit Discharge Controls
 Deleted
 S-5 Good Housekeeping
 Deleted
 S-6 Preventative Maintenance
 Deleted
 S-7 Vehicle Maintenance, Fueling and Storage
 Deleted
 S-8 Use of Pesticides, Herbicides and Fertilizers
 Deleted
 S-9 Landscape Maintenance
 Deleted
 S-10 Snow and Ice Melt
 Deleted
 S-11 Street Sweeping and Cleaning
 Deleted
 S-12 Storm Sewer System Cleaning
 Deleted

Tables

| Table 5-1 | Potential Pollutant Sources and Types with Applicable Source Control BMPs
| deleted |
| Table 5-2 | Polluting Activities Associated With Common Hotspot Operations
| deleted |
| Table 5-3 | Example Source Control Plan Targeting Bacteria
| deleted |
BMP MAINTENANCE

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>BMP MAINTENANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>2.0</td>
<td>DEFINING MAINTENANCE RESPONSIBILITY FOR PUBLIC AND PRIVATE FACILITIES</td>
</tr>
<tr>
<td>3.0</td>
<td>DEVELOPING A MAINTENANCE PLAN</td>
</tr>
<tr>
<td>4.0</td>
<td>GRASS BUFFERS AND SWALES</td>
</tr>
<tr>
<td>4.1</td>
<td>Inspection</td>
</tr>
<tr>
<td>4.2</td>
<td>Debris and Litter Removal</td>
</tr>
<tr>
<td>4.3</td>
<td>Aeration</td>
</tr>
<tr>
<td>4.4</td>
<td>Mowing</td>
</tr>
<tr>
<td>4.5</td>
<td>Irrigation Scheduling and Maintenance</td>
</tr>
<tr>
<td>4.6</td>
<td>Fertilizer, Herbicide, and Pesticide Application</td>
</tr>
<tr>
<td>4.7</td>
<td>Sediment Removal</td>
</tr>
<tr>
<td>5.0</td>
<td>BIORETENTION (RAIN GARDEN OR POROUS LANDSCAPE DETENTION)</td>
</tr>
<tr>
<td>5.1</td>
<td>Inspection</td>
</tr>
<tr>
<td>5.2</td>
<td>Debris and Litter Removal</td>
</tr>
<tr>
<td>5.3</td>
<td>Mowing and Plant Care</td>
</tr>
<tr>
<td>5.4</td>
<td>Irrigation Scheduling and Maintenance</td>
</tr>
<tr>
<td>5.5</td>
<td>Replacement of Wood Mulch</td>
</tr>
<tr>
<td>5.6</td>
<td>Sediment Removal and Growing Media Replacement</td>
</tr>
<tr>
<td>6.0</td>
<td>GREEN ROOFS</td>
</tr>
<tr>
<td>6.1</td>
<td>Inspection</td>
</tr>
<tr>
<td>6.2</td>
<td>Plant Care and Media Replacement</td>
</tr>
<tr>
<td>6.3</td>
<td>Irrigation Scheduling and Maintenance</td>
</tr>
<tr>
<td>7.0</td>
<td>EXTENDED DETENTION BASINS (EDBs)</td>
</tr>
<tr>
<td>7.1</td>
<td>Inspection</td>
</tr>
</tbody>
</table>

TOC-BM (1)
7.2 Debris and Litter Control
 Accept
7.3 Mowing and Plant Care
 Accept
7.4 Aeration
 Accept
7.5 Mosquito Control
 Accept
7.6 Irrigation Scheduling and Maintenance
 Accept
7.7 Sediment Removal from the Forebay, Trickle Channel and the BMP Bottom
 Amended
7.8 Sediment Removal from the Basin Bottom
 Accept
7.9 Erosion and Structural Repairs
 Accept

8 SAND FILTERS
 Accept
8.2 Inspection
 Accept
8.3 Debris and Litter Removal
 Accept
8.4 Filter Surface Maintenance
 Accept
8.5 Erosion and Structural Repairs
 Accept

9 WET PONDS AND CONSTRUCTED WETLAND PONDS
 Amended
9.2 Inspection
 Accept
9.3 Debris and Litter Removal
 Accept
9.4 Aquatic Plant Harvesting
 Accept
9.5 Mosquito Control
 Accept
9.6 Sediment Removal from the Forebay
 Accept
9.7 Sediment Removal from the Pond Bottom
 Accept

10 CONSTRUCTED WETLAND CHANNELS
 Accept
10.2 Inspection
 Accept
10.3 Debris and Litter Removal
 Accept
10.4 Aquatic Plant Harvesting
 Accept
10.5 Sediment Removal
 Accept

11 PERMEABLE PAVEMENT SYSTEMS
 Accept
11.2 Inspection
 Accept
11.3 Debris Removal, Sweeping, and Vacuuming
 Accept
11.4 Snow Removal
Accept

11.5 Full and Partial Replacement of the Pavement of Infill Material
Accept

12 UNDERGROUND BMP’S
Accept

12.2 Inspection
Accept

12.3 Debris Removal, Cartridge Replacement, and Vacuuming
Accept

13 REFERENCES
Accept
CONSTRUCTION BMP’S

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>CB-</td>
</tr>
<tr>
<td>1.1 Purpose and Scope</td>
<td>Added</td>
</tr>
<tr>
<td>1.2 Review and Acceptance</td>
<td>Added</td>
</tr>
<tr>
<td>1.3 Policy, Standards and Submittal Requirements</td>
<td>Added</td>
</tr>
<tr>
<td>1.3.1 Policy</td>
<td>Added</td>
</tr>
<tr>
<td>1.3.2 Elements of an Erosion Control Plan</td>
<td>Added</td>
</tr>
<tr>
<td>1.3.3 PDP Erosion Control Report and Drawings Submittal Requirements</td>
<td>Added</td>
</tr>
<tr>
<td>1.4 Security for Erosion Control</td>
<td>Added</td>
</tr>
<tr>
<td>1.5 Warranty</td>
<td>Added</td>
</tr>
<tr>
<td>1.6 Enforcement</td>
<td>Added</td>
</tr>
<tr>
<td>2.0 FUNDAMENTAL EROSION AND SEDIMENT CONTROL PRINCIPLES</td>
<td>Accept</td>
</tr>
<tr>
<td>2.1 Erosion</td>
<td>Accept</td>
</tr>
<tr>
<td>2.2 Sedimentation</td>
<td>Accept</td>
</tr>
<tr>
<td>2.3 Effective Erosion and Sediment Control</td>
<td>Accept</td>
</tr>
<tr>
<td>2.4 Fundamental Erosion Control Principles</td>
<td>Added</td>
</tr>
<tr>
<td>3.0 COLORADO CONSTRUCTION STORMWATER DISCHARGE PERMITS</td>
<td>Delete</td>
</tr>
<tr>
<td>3.1 Preparing and Implementing a Stormwater Management Plan (SWMP)</td>
<td>Delete</td>
</tr>
<tr>
<td>3.1.1 General SWMP Recommendations</td>
<td>Delete</td>
</tr>
<tr>
<td>3.1.2 SWMP Elements</td>
<td>Delete</td>
</tr>
<tr>
<td>3.2 Inspections</td>
<td>Accept</td>
</tr>
<tr>
<td>3.2.1 Inspection Frequency</td>
<td>Amended</td>
</tr>
<tr>
<td>3.2.2 Inspection Records</td>
<td>Accept</td>
</tr>
<tr>
<td>3.3 Maintenance</td>
<td>Accept</td>
</tr>
<tr>
<td>3.4 Disposition of Temporary Measures</td>
<td>Accept</td>
</tr>
</tbody>
</table>

TOC-CB (1)
3.5 2009 Federal Effluent Limitation Guidelines
Accept

4.0 OVERVIEW OF CONSTRUCTION BMP’S
Accept
4.1 Erosion Control Measures
Accept
4.2 Sediment Control Measures
Amended
4.3 Site Management
Accept
4.4 Materials Management
Accept
4.5 Proprietary BMPs
Accept

5.0 BMP SELECTION AND PLANNING
Accept
5.1 Site Assessment
Accept
5.2 Slope-Length and Runoff Considerations
Accept
5.3 Using the Revised Universal Soil Loss Equation
Accept
5.4 BMP Functions
Accept
5.5 Consistency with Other Plans
Accept
 5.5.1 Drainage Plans
 Accept
 5.5.2 Post Construction Stormwater Management
 Accept
 5.5.3 Air Quality Plans
 Accept
5.6 Guidelines for Integration Site Conditions and BMPs into SWMP
Accept

6.0 CONSTRUCTION DEWATERING
Accept

7.0 CONSTRUCTION IN WATERWAYS
Accept

8.0 CONSIDERATIONS FOR LINEAR CONSTRUCTION PROJECTS
Accept
8.1 General Considerations
Accept
8.2 Underground Utility Trenching Criteria
Accept

9.0 REFERENCES
Accept

CONSTRUCTION BMP PLAN SYMBOLS
Accept

CONSTRUCTION BMP FACT SHEETS
Accept
EC-1 Surface Roughening (SR)
Accept
EC-2 Temporary and Permanent Seeding (TS/PS)
Accept
EC-3 Soil Binders (SB)
Accept
EC-4	Mulching (MU)	Accept
EC-5	Compost Blanket and Filter Berm (CB)	Accept
EC-6	Rolled Erosion Control Products (RECP) (multiple types)	Accept
EC-7	Temporary Slope Drains (TSD)	Accept
EC-8	Temporary Outlet Protection (TOP)	Accept
EC-9	Rough Cut Street Control (RCS)	Accept
EC-10	Earth Dikes and Drainage Swales (ED/DS)	Accept
EC-11	Terracing (TER)	Accept
EC-12	Check Dams (CD) (multiple types)	Accept
EC-13	Streambank Stabilization (SS)	Accept
EC-14	Wind Erosion / Dust Control (DC)	Accept

MATERIALS MANAGEMENT

MM-1	Concrete Washout Area (CWA)	Accept
MM-2	Stockpile Management (SP) (multiple types)	Accept
MM-3	Good Housekeeping Practices (GH)	Accept

SEDIMENT CONTROLS

SC-1	Silt Fence (SF)	Accept
SC-2	Sediment Control Log (SCL)	Accept
SC-3	Straw Bale Barrier (SBB)	Deleted
SC-4	Brush Barrier (BB)	Accept
SC-5	Rock Sock (RS)	Accept
SC-6	Inlet Protection (IP) (multiple types)	Accept
SC-7	Sediment Basin (SB)	Accept
SC-8	Sediment Trap (ST)	Accept
SC-9	Vegetative Buffers (VB)	Accept
SC-10	Chemical Treatment (CT)	Accept

SITE MANAGEMENT AND OTHER SPECIFIC PRACTICES

<p>| SM-1 | Construction Phasing / Sequencing (CP) | Accept |
| SM-2 | Protection of Existing Vegetation (PV) | Accept |
| SM-3 | Construction Fence (CF) | Accept |</p>
<table>
<thead>
<tr>
<th>SM-4</th>
<th>Vehicle Tracking Control (VTC) (multiple types)</th>
<th>Accept</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-5</td>
<td>Stabilized Construction Roadway (SCR)</td>
<td>Accept</td>
</tr>
<tr>
<td>SM-6</td>
<td>Stabilized Staging Area (SSA)</td>
<td>Accept</td>
</tr>
<tr>
<td>SM-7</td>
<td>Street Sweeping and Vacuuming (SS)</td>
<td>Accept</td>
</tr>
<tr>
<td>SM-8</td>
<td>Temporary Diversion Channel (TDC)</td>
<td>Accept</td>
</tr>
</tbody>
</table>
SM-9 Dewatering Operations (DW)
Accept

SM-10 Temporary Stream Crossing (TSC) (multiple types)
Accept

SM-11 Temporary Batch Plant (TBP)
Accept

SM-12 Paving and Grinding Operations (PGO)
Accept

Figures

Figure 7-1. Components of Effective Stormwater Management at Construction Sites
Accept

Figure 7-2 Construction Stormwater Management
Accept

Figure SBB-1 Straw Bale Barrier
Deleted

Tables

Table 7-1. Comparison of State and Local Construction-Phase Stormwater Permits in Colorado
Accept

Table 7-2. Overview of Construction BMPs
Accept