TYPICAL ONE-LINE CATEGORY A1 DER

CATEGORY A1 INCLUDES: ALL SYNCHRONOUS GENERATORS EXCEPT WIND TURBINES

*POINT OF COMMON COUPLING (PCC):

PCC1 - PCC FOR COMMERCIAL CUSTOMERS SERVED BY DEDICATED TRANSFORMER PCC2 - PCC FOR COMMERCIAL CUSTOMERS WITHOUT DEDICATED TRANSFORMER

PCC3 - PCC FOR RESIDENTIAL CUSTOMERS

NOTES:

THIS DRAWING IS AN EXAMPLE AND MAY NOT BE REPRESENTATIVE OF ALL SYSTEMS.

TYPICAL ONE-LINE CATEGORY B2 INVERTER CONNECTED DER

CATEGORY B2 (INVERTER) INCLUDES INVERTER CONNECTED DER SOURCED BY: SOLAR PV, ENERGY STORAGE, FUEL CELLS, OR ANY OTHER SOURCE

*POINT OF COMMON COUPLING (PCC):

PCC1 - PCC FOR COMMERCIAL CUSTOMERS SERVED BY DEDICATED TRANSFORMER PCC2 - PCC FOR COMMERCIAL CUSTOMERS WITHOUT DEDICATED TRANSFORMER

PCC3 - PCC FOR RESIDENTIAL CUSTOMERS

NOTES:

THIS DRAWING IS AN EXAMPLE AND MAY NOT BE REPRESENTATIVE OF ALL SYSTEMS.

TYPICAL ONE-LINE CATEGORY B2 NON-INVERTER DER

CATEGORY B2 (NON-INVERTER) INCLUDES: INDUCTION GENERATORS AND NON-INVERTER CONNECTED WIND TURBINES

*POINT OF COMMON COUPLING (PCC):

PCC1 - PCC FOR COMMERCIAL CUSTOMERS SERVED BY DEDICATED TRANSFORMER PCC2 - PCC FOR COMMERCIAL CUSTOMERS WITHOUT DEDICATED TRANSFORMER

PCC3 - PCC FOR RESIDENTIAL CUSTOMERS

NOTES:

THIS DRAWING IS AN EXAMPLE AND MAY NOT BE REPRESENTATIVE OF ALL SYSTEMS.

CONFIGURATION: AC COUPLED WITH NO BACKED UP LOADS

NOTES:

THIS DRAWING IS AN EXAMPLE AND MAY NOT BE REPRESENTATIVE OF ALL SYSTEMS.

ALL ENERGY SOURCES ELECTRICALLY CONNECTED TO THE FCU DISTRIBUTION SYSTEM MUST BE ABLE TO BE ISOLATED BY A DISCONNECT SWITCH. MORE THAN ONE DISCONNECT SWITCH MAY BE USED TO SATISFY THIS REQUIREMENT.

CONFIGURATION: AC COUPLED WITH BACKED UP LOADS NON-STORAGE DER NOT OPERATIONAL DURING BACKUP

NOTES:

THIS DRAWING IS AN EXAMPLE AND MAY NOT BE REPRESENTATIVE OF ALL SYSTEMS.

ALL ENERGY SOURCES ELECTRICALLY CONNECTED TO THE FCU DISTRIBUTION SYSTEM MUST BE ABLE TO BE ISOLATED BY A DISCONNECT SWITCH. MORE THAN ONE DISCONNECT SWITCH MAY BE USED TO SATISFY THIS REQUIREMENT.

CONFIGURATION: AC COUPLED WITH BACKED UP LOADS NON-STORAGE DER OPERATIONAL DURING BACKUP

NOTES:

THIS DRAWING IS AN EXAMPLE AND MAY NOT BE REPRESENTATIVE OF ALL SYSTEMS.

ALL ENERGY SOURCES ELECTRICALLY CONNECTED TO THE FCU DISTRIBUTION SYSTEM MUST BE ABLE TO BE ISOLATED BY A DISCONNECT SWITCH. MORE THAN ONE DISCONNECT SWITCH MAY BE USED TO SATISFY THIS REQUIREMENT.

CONFIGURATION: DC COUPLED WITH NO BACKED UP LOADS

NOTES:

THIS DRAWING IS AN EXAMPLE AND MAY NOT BE REPRESENTATIVE OF ALL SYSTEMS.

ALL ENERGY SOURCES ELECTRICALLY CONNECTED TO THE FCU DISTRIBUTION SYSTEM MUST BE ABLE TO BE ISOLATED BY A DISCONNECT SWITCH. MORE THAN ONE DISCONNECT SWITCH MAY BE USED TO SATISFY THIS REQUIREMENT.

CONFIGURATION: DC COUPLED WITH BACKED UP LOADS

NOTES:

THIS DRAWING IS AN EXAMPLE AND MAY NOT BE REPRESENTATIVE OF ALL SYSTEMS.

ALL ENERGY SOURCES ELECTRICALLY CONNECTED TO THE FCU DISTRIBUTION SYSTEM MUST BE ABLE TO BE ISOLATED BY A DISCONNECT SWITCH. MORE THAN ONE DISCONNECT SWITCH MAY BE USED TO SATISFY THIS REQUIREMENT.