

Prepared By:

Table of Contents

1.	Introduction	1
	Roadway Safety	1
	Moving Towards Vision Zero	1
	Collaboration and Planning Efforts	2
	Explanation of Data	2
	Types of Crashes	2
2.	General Safety Data	4
	Crash Numbers	4
	Crash Severity	4
	Crashes by Mode	5
	Impact on Vulnerable Road Users	5
	Location of Crashes	7
	Arterials as Priority Corridors	7
	Locations of Severe Crashes	9
	Non-Intersection Crashes	9
	Crashes by Month, Day, and Time	. 12
	Crashes by Month of the Year	. 12
	Crashes by Day of the Week	. 12
	Crashes by Time of Day	. 12
	Crash Information by Driver Age	. 13
	Alcohol Related Crashes (Drivers Under the Influence – DUI)	. 13
	DUI Crashes by Age	. 14
	Motorcycle Crashes	. 14
	Crashes Involving Youth	. 15
	Economic Impact of Crashes	. 17
	Comparison to Other Cities	. 17
3.	Review of Most Frequent Severe Crash Types	.19
	Approach Turn Crashes	. 20
	Bicycle Crashes	. 21
	Rear End Crashes	. 26
	Right Angle Crashes	. 27
	Fixed Object Crashes	. 28
	Pedestrian Crashes	. 29
	Comparing Daytime and Nighttime Pedestrian Crashes	. 32
	Fatal Pedestrian Crashes	. 32

4.	Intersection Evaluation	34
	Intersections by Excess Crash Cost	34
	Crash Prediction Models	34
	Traffic Volumes	35
	Level of Service of Safety (LOSS)	35
	Trends In Intersection Safety	35
	Pattern Recognition	37
	Roundabout Safety Review	38
5.	Improving Roadway Safety	40
	Elements of a Vision Zero Action Plan	40
	Systems-Based Approach	40
	Incorporating Safety into all City Efforts	40
	Robust Annual Review, Evaluation, and Understanding of Safety Data	40
	Apply All the Elements of Safety Toolbox	41
	Annual Focus Areas	42
	Collaborate on Best Practices	42
	Tracking and Measuring Safety Improvements	42
	Recent Project Evaluations	42
	Identified Priorities and Action Plan	43
6.	Next Steps	45
	Working On Priorities	45
	Improving the Data	45
	Looking Towards the Future	45

List of Tables

Table 1. Economic Impact of Traffic Crashes in Fort Collins, 2021	17
Table 2. Fatal Crash Rate Comparison to Other Colorado Cities	18
Table 3. Fatal Crash Rate Comparison to Similar Peer Cities Nationwide	18
Table 4. Numerical Summary of Crash Types Invovled in the Highest Number of Severe Crashes	20
Table 5. Locations with Most Approach Turn Crashes	21
Table 6. Locations with Most Bicycle Crashes	
Table 7. Locations with Most Rear End Crashes	
Table 8. Locations with Most Right Angle Crashes	
Table 9. Locations with Most Pedestrian Crashes	31
Table 10. Prediction Model Used in the Analysis for Each Intersection	
Table 11. Top 50 Intersections by Excess Crash Cost	36
Table 12. Intersection with Patterns of Particular Crash Types	37/38
Table 13. Roundabout Intersection Comparison – by Excess Crash Cost	39
Table 14. Roundabout Intersection Crash Comparison with Change in Traffic Control	39
Table 15. Monitoring Safety from Recent Improvements	42
Table 16. Identified Priorities For Safety Based Action Items	43/44

List of Figures

Figure 1.	Crash Type Diagrams	. 3
Figure 2.	Total Crashes 2017-2021	. 4
Figure 3.	Overall Crash Severity	. 4
Figure 4.	Crash Trends by Severity	. 5
Figure 5.	Severe Crash Trends by Mode	. 5
Figure 6.	Severity Impact on Vulnerable Road Users	. 6
Figure 7.	Vulnerable User Crash Trends	. 6
Figure 8.	Vulnerable User Crash Trends by Mode (Severe Crashes)	. 6
Figure 9.	Locations of Crashes	. 7
Figure 10	Citywide Heat Map of Crashes (2019-2021)	. 8
Figure 11.	Crash Types for Non-Intersection Crashes	. 9
Figure 12	Severe Crash Heat Map (2019-2021)	10
Figure 13	Non-Intersection Crash Heat Map (2019-2021)	11
Figure 14	Injury/Fatal Crashes by Month	12
Figure 15	Crashes by Day of the Week	12
Figure 16	Crashes by Time of Day	12
Figure 17	At Fault Drivers by Age	13
Figure 18	Crash Type by Driver Age	13
Figure 19	DUI Crash Trends	14
Figure 20	DUI Crashes by Age of At Fault Driver	14
Figure 21	Motorcycle Crash Trends	14
Figure 22	Severity Impact on Motorcycle Crashes	15
Figure 23	Trends for Crashes Involving Youths	15
Figure 24	Mode Split for Crashes Involving Youths	16
Figure 25	Crashes Involving Young Drivers	16
Figure 26	Crashes Involving Young Bicyclists	16
Figure 27.	Crashes Involving Young Pedestrians	16
Figure 28	Crash Types by Total Crashes and Severe Crashes	19
Figure 29	Historic Trend of Approch Turn Crashes	20
Figure 30.	Historic Trends of Bicycle Crashes	21
Figure 31.	Severity Impact on Bicycle Crashes	22
Figure 32	Number of Severe Bicycle Crashes	22
Figure 33.	Bicycle Crashes by Age of Rider	22
Figure 34	Bicycle Crashes by Location	23
Figure 35	Bicycle Crashes by Road Classification	23
Figure 36	Types of Bicycle Crashes	23
Figure 37	Visual Depiction of Types of Bicycle Crashes	24
	Bicycle Crash Heat Map (2019-2021)	
Figure 39	Historic Trend for Rear End Crashes	26
-	Historic Trend for Right Angle Crashes	
Figure 41	Right Angle Crashes by Type	27
Figure 42.	Historic Trend for Fixed Object Crashes	28

Figure 44.Numbers of Severe Pedestrian Crashes29Figure 45.Pedestrian Crashes by Location29Figure 46.Pedestrian Crashes by Road Classification29Figure 47.Pedestrian Crashes by Age of Pedestrian30Figure 48.Pedestrian Crashes by Gender of Pedestrian30Figure 49.Pedestrian Crashes by Type31Figure 50.Pedestrian Crashes Heat Map (2019-2021)33Figure 51.Systems-Based Transortation Safety Approach40	Figure 43.	Historical Trends of Pedestrian Crashes	. 29
Figure 46. Pedestrian Crashes by Road Classification29Figure 47. Pedestrian Crashes by Age of Pedestrian30Figure 48. Pedestrian Crashes by Gender of Pedestrian30Figure 49. Pedestrian Crashes by Type31Figure 50. Pedestrian Crashes Heat Map (2019-2021)33	Figure 44.	Numbers of Severe Pedestrian Crashes	. 29
Figure 47. Pedestrian Crashes by Age of Pedestrian30Figure 48. Pedestrian Crashes by Gender of Pedestrian30Figure 49. Pedestrian Crashes by Type31Figure 50. Pedestrian Crashes Heat Map (2019-2021)33	Figure 45.	Pedestrian Crashes by Location	. 29
Figure 48. Pedestrian Crashes by Gender of Pedestrian30Figure 49. Pedestrian Crashes by Type31Figure 50. Pedestrian Crashes Heat Map (2019-2021)33	Figure 46.	Pedestrian Crashes by Road Classification	. 29
Figure 49. Pedestrian Crashes by Type31Figure 50. Pedestrian Crashes Heat Map (2019-2021)33	Figure 47.	Pedestrian Crashes by Age of Pedestrian	. 30
Figure 50. Pedestrian Crashes Heat Map (2019-2021)	Figure 48.	Pedestrian Crashes by Gender of Pedestrian	. 30
	Figure 49.	Pedestrian Crashes by Type	. 31
Figure 51. Systems-Based Transortation Safety Approach 40	Figure 50.	Pedestrian Crashes Heat Map (2019-2021)	. 33
	Figure 51.	Systems-Based Transortation Safety Approach	. 40

Section 1

The City of Fort Collins is a vibrant city of 170,000 people nestled against the foothills of the Rocky Mountains about an hour's drive north of Denver. This outdoor oriented community is home to Colorado State University and its 33,000 students. The area is known for its high tech companies, innovation, entrepreneurialism, and beer and bike culture. The Old Town area in the city is a unique, lively downtown with residential areas, historic buildings, retail shops, museums, theatres, and restaurants.

ROADWAY SAFETY

Like other cities, The City of Fort Collins experiences roadway crashes. With an average of almost 3,400 reported crashes each year, 285 of which involve an injury or fatality, the impact of traffic crashes touches every aspect of the physical and emotional well-being of a community including families, workplaces, emergency responders, neighborhoods, livelihoods, mobility and more. In 2021 alone, the annual societal cost of these crashes was \$176 million dollars. Improving roadway safety by reducing the number and severity of crashes is a priority.

Safety Matters

In 2021, there were 321 crashes involving an injury or fatality in Fort Collins

This Roadway Safety Report is a compilation of traffic crash and safety information related to reported crashes on public streets within Fort Collins. It summarizes basic crash information, analyzes specific types of crashes in more detail, and evaluates locations for higher than expected crashes, trends, and patterns. The report also discusses specific next steps and serves as an action plan for the City in the coming year.

MOVING TOWARDS VISION ZERO

In late 2016, the City of Fort Collins became the first public local entity to join the Colorado Department of Transportation's (CDOT) Moving Towards Zero Deaths initiative. The proclamation reflects the City's commitment to the vision of zero traffic-related deaths.

Making progress towards Vision Zero requires a dedicated effort that focuses on actual safety and utilizes a systems-based approach that is a continuous process of data, evaluation, prioritization, countermeasures, implementation, and evaluation. See graphic at right. The mitigation strategies should specifically target a reduction of crashes.

The starting point is to fully review, analyze, and understand the locations, patterns, causes and trends among current crashes. This document provides the information needed for that data review.

The Vision Zero elements and action plan in Section 5 provide an initial roadmap to improve safety through a data driven process. It is anticipated that the Vision Zero Action Plan will be refined over time.

Systems-Based Transportation Safety Approach

COLLABORATION AND PLANNING EFFORTS

Improving roadway safety requires commitment and contributions beyond the City's Traffic Operations Department. Other city departments, including Police Services, FCMoves, Engineering, Streets, and others all play a vital role in a comprehensive roadway safety improvement program. Strategies need to be multifaceted and include all the various components including Engineering, Enforcement, Education/Encouragement and Evaluation. They should encompass all elements of the transportation system from policies and program through design, construction, operations, management and maintenance. A strong cooperative relationship among the groups is an important factor as well.

The residents of the community and everyone using the transportation system through any mode also play a critical role in supporting safety for everyone. Everyone has a right to travel around Fort Collins safely, and everyone has a responsibility to contribute towards that end. This document provides information that can be used for education and messaging to the greater Fort Collins community.

Finally, Fort Collins has invested in a number of planning documents, including the Transportation Master Plan and Active Modes Plan that provide concurrent guidance on the transportation system. Safety work and planning efforts should dovetail into one another.

EXPLANATION OF DATA

The source for crash information is the City of Fort Collins Traffic Operations Department traffic crash database. The department works cooperatively with Fort Collins Police Services to obtain electronic copies of reports for all crashes on public streets. This includes all crashes investigated and reported by Fort Collins Police Services.

Traffic Operations staff reviews each crash report to ensure that data is as complete, accurate and consistent as possible. Crash narratives are used to further detail some of the fields. Crashes that go unreported and crashes on private property (such as grocery store parking lots) are not represented in this analysis. In addition, starting in 2018 non-injury crashes reported only to the State (such as during 'accident alert' status during bad weather) are not being captured by Fort Collins Police Services, and therefore not included in the analysis. This can be seen in the data for 2017 and 2018 which has slightly higher non-injury crash numbers. The change in reporting does not impact the data related to injury crashes.

Population data used in this report was from the U.S. Census Bureau. The Colorado Department of Revenue provided data showing the number of licensed drivers by age in Fort Collins.

Most of the analyses represent five years of data, from 2017 to 2021. Some instances are noted and may only include three years of analysis, 2019-2021.

TYPES OF CRASHES

Throughout the document, there is detailed discussion and analysis regarding a variety of crash types. The most frequently noted crash categories are listed on the next page with an explanation and definition for each one. Some are depicted in the diagrams in *Figure 1*.

Crash reports will often indicate "front to side" collisions (also known as broadside). As indicated in the definitions and the diagrams, the circumstances related to the front of a vehicle striking the side of another vehicle can vary, and the mitigation to address these collisions may be very different depending on the type of crash. More detailed descriptions (approach turn, right angle, and overtaking turn) are explained below and used in this report.

Approach Turn

Two vehicles traveling in opposite directions, one turns left (or attempts a U-turn) in front of the oncoming vehicle and is struck.

Bicycle

Any crash that involves a bicyclist.

Fixed Object

A single vehicle crash where a fixed object other than a parked vehicle is struck.

Overtaking Turn

Two vehicles traveling in the same direction, the front vehicle turns right or left and is hit as the following vehicle tries to pass on the right or left. When this type of crash involves a bicycle traveling straight and a vehicle making a right turn, it is also known as a 'right hook' crash.

Parking Related

Any crash involving a parked vehicle or a vehicle entering/leaving a parking space.

Pedestrian

Any crash that involves a pedestrian.

Rear End

Two vehicles traveling in the same direction, leading vehicle struck by following vehicle.

Right Angle

Two vehicles traveling <u>on perpendicular streets</u> one fails to yield or passes a traffic control device and strikes the other.

Sideswipe Opposite Direction (also side to side opposite)

Two vehicles traveling in opposite directions, one veers into the wrong lane and strikes the side of the other car. This often occurs where a vehicle waiting at a STOP sign or traffic signal is struck by a vehicle turning right from a perpendicular road (frequently during icy conditions).

Sideswipe Same Direction (also side to side same)

Two vehicles traveling the same direction, one vehicle veers into the other striking it in the side (usually due to improper lane changes).

Other

Other crashes that do not fit into any other category.

Figure 1. Crash Type Diagrams

Section 2 GENERAL SAFETY DATA

This section of the report provides an overview of general safety data for the City of Fort Collins. Unless otherwise noted, the data represents a compilation or average of five years of data (2017-2021).

CRASH NUMBERS

Total reported crashes are shown in *Figure 2* and are generally declining. 2020 is understood to be a unique year due to the pandemic, with reduced travel volumes throughout the year. Compared to pre-pandemic 2019, total reported crashes declined by almost 20%.

Severe crashes are those that are coded (documented) as 'suspected minor injury', 'suspected major injury' or 'fatal'. The numbers of those crashes are generally increasing – up almost 5% since 2017, and 15% when compared to 2019 (pre pandemic). 2020 is considered to be an anomaly.

Comparisons to other cities are in a later section (page 18).

Figure 2. Total Crashes 2017-2021

Compared to 2019: Total crashes are down 20%

But severe crashes are up 15%

A **'Severe'** crash is one that involves a non-incapacitating injury, incapacitating injury, or fatality

CRASH SEVERITY

The majority (75%) of crashes do not result in any injury. See *Figure 3.* Crashes that are included within the 'severe' category throughout this report include those coded in the police report as 'suspected minor injury', 'suspected major injury' or fatal crashes. Severe crashes represent 8.4% of all reported crashes.

8.4% of crashes involve an injury/fatality

A review of whether that percentage has changed in the last years indicates that crashes in Fort Collins have become more severe (see values in the top of *Figure 2*). Pre-pandemic the percent of severe crashes was about 7%. In 2020 the percentage was 10.5% and in 2021 the percent of crashes that were severe is 11.1%. This increase is a reflection of the combination of generally lower overall crash numbers but increasing severe crash trends. This phenomenon was seen across the United States during the pandemic – lower overall crash numbers likely due to reduced volumes, but higher severe crashes potentially due to higher speeds. The fact that in Fort Collins the trend towards more severity has continued in 2021 will need to be carefully monitored.

Figure 4 shows the five-year crash trends by severity. It is important to note that fatal crash numbers appear to fluctuate more due to the small number of crashes and due to regression to the mean. Regression to the mean is the statistical tendency for data points to adjust towards the long-term average. Because of these things, caution is needed when looking for trends in the fatal crash numbers.

CRASHES BY MODE

Figure 5 shows trends in severe crashes when separated by modes. Crashes involving only motor vehicles represent the largest percentage of severe crashes – about 2 of every 3 severe crashes.

Figure 4. Crash Trends by Severity

Figure 5. Severe Crash Trends by Mode

IMPACT ON VULNERABLE ROAD USERS

When vulnerable road users (motorcyclists, bicyclists, and pedestrians) are involved in a crash, it tends to be severe. While crashes involving only motor vehicles remain by far the most prevalent (94% of all crashes), they account for just 53% of fatalities. See *Figure 6*.

Vulnerable road users are involved in 6% of all crashes but 47% of fatal crashes

Figure 6. Severity Impact on Vulnerable Road Users

Trends in the past five years for crashes that involve a vulnerable user are shown in Figure 7. Bicycle crashes are about twice as common a motorcycle crashes or pedestrian crashes. While bicycle crashes saw a pronounced drop during the pandemic, motorcycle crashes increased. In 2021, both bicycle and pedestrian crashes increased.

The number of severe crashes by mode over the past five years is shown in Figure 8. Severe bicycle crashes vary quite a bit from year to year but are similar in 2021 to 2017 and 2019. Severe pedestrian crashes are slowly trending up, and most concerning is that there were four (4) pedestrian fatalities during 2021.

More detailed information on crashes involving bicyclists and pedestrians is presented later in this report.

2018

2017

Figure 7. Vulnerable User Crash Trends (Total Crashes)

Figure 8. Vulnerable User Crash Trends By Mode (Severe Crashes)

2019 2020

LOCATION OF CRASHES

Crash reports generally show information on relative location such as cross streets, and an indication whether a crash was related to some type of intersection. As typical in an urban area, more than three in every four crashes (78%) occur at an intersection, driveway or alley access. See *Figure 9.* This illustrates the importance of focusing the traffic safety program at intersections and reducing the number of driveways/accesses (when possible).

Crash reports have begun to include a geo-coded location that can be evaluated through mapping efforts. This allows for a visual depiction of crash prevalence at specific locations or along corridors. *Figure 10* is a citywide heat map of crashes in the last three years in Fort Collins (2019-2021).

Care should be taken to understand that 'hot spots' on the map are simply number based, and neither correlated to volumes, nor necessarily indicative of statistically based higher than expected crash locations. These heat maps can provide an overall sense of crash locations and can be used to target enforcement areas. More detailed heat maps related to specific types of crashes (including crashes involving pedestrians and bicyclists) are shown later in this report.

Arterials as Priority Corridors

The three years of data in *Figure 10* were reviewed to determine what types of streets are most crash prone. Arterial streets are the major streets in the city intended to provide citywide connectivity and intercity travel. Specifically, they are the streets that are classified as either a minor arterial (2 lane) or major arterial (4 lane or 6 lanes) on the City of Fort Collins' Master Street Plan (such as College Avenue, Harmony Road, Laporte Avenue, Overland Trail, etc.).

The vast majority of crashes occur on arterials, with almost nine of every 10 severe crashes occurring on an arterial. This is depicted on a map in *Figure 11*. Arterials are those roadways with the highest traffic volumes, creating the greatest number of potential conflicts. Arterials are also the roadways with the highest traffic speeds within the City, which can result in less time for reaction, and when crashes occur the higher speeds tend to result in greater severity.

As the City pursues improvements to its safety performance, the priority corridors for action must be the arterial system (and especially its intersections). These are the locations where improvements have the largest opportunity for reduction in number and severity of crashes.

Although the priority is on arterials, it should be noted that roadway safety along collector roads and local neighborhood streets remains an important element of the transportation system. Crash evaluation will continue to be completed on all roadways, with programs, projects, and spot improvements made throughout the City as appropriate.

78% of crashes occur at an intersection, driveway, or alley access

Figure 9. Location of Crashes

Figure 10. Citywide Heat Map of Crashes (2019-2021)

Severe Non-Intersections Crashes

Bicycle. 12%

2021 Fort Collins Annual Roadway Safety Report 9

Pedestrian

8%

The type of non-intersection crashes for both overall non-intersection and severe non-intersection crashes is shown in *Figure 11*. The type of crashes most prevalent are very different from the type of crashes when

intersections.

Crashes that are not specifically tied to the function or operations at an intersection are classified as non-intersection crashes. When added together with driveway related crashes, this represents about 28% of reported crashes. These include almost all parking related crashes, run-off-the-road vehicles that result in a fixed object crash, and crashes that occur at driveways. Fixed object crashes can be the result of slow speed sliding into curbs during inclement weather, or high speed impaired drivers leaving the road. The location of non-

Non-Intersection Crashes

reviewing all crash data (See Figure 28 on page 19).

19%

Object

19%

Locations of Severe Crashes

The heat map also helps to identify potential locations not related to intersections where severe crashes are occurring.

arterial system, 70% occur at intersections, and 50% at signalized

Figure 12 shows the location of severe crashes in the City in the past three years. As noted earlier, 89% of severe crashes occur on the

Of note is that there were 29 crashes resulting in a fatality in the past three years. Seventeen of these fatal

crashes (59%) were not related to an intersection and occurred midblock. The locations are shown in *Figure 12*.

d 10 🕈 ወ ቅ ____

686 crashes each year 7.4% are severe intersection crashes is shown in Figure 13. Only 61% of non-intersection crashes occur on the arterial system, with many non-intersection crashes occurring on lower classified roadways when related to parking. Other obvious 'hot spots' are heavily used driveways to commercial businesses.

End

13%

Non-Intersection Crashes

Severe Crashes 89% along arterials 70% at intersections

Figure 12. Severe Crash Heat Map (2019-2021)

Figure 13. Non-Intersection Crash Heat Map of Crashes (2019-2021)

CRASHES BY MONTH, DAY, AND TIME

The variations of crashes in intervals of time can help identify when crashes are more prevalent, and especially when crash rates are higher than expected when compared to traffic volumes. This offers information that can be used to target educational campaigns and/or enforcement. The analysis represents an average of five years of data (2017-2021). The traffic volume data for the month and day of week analysis comes from the City of Fort Collins counts, while the hourly time of day data comes from State Highway 14 continuous counters west of I-25.

Crashes by Month of the Year

A review of injury/fatal crashes by month shows that the number of severe crashes vary substantially (between an average of 16 to 32 each month). The most crashes occur during the late summer months and into the fall (perhaps coinciding with the start of school, including the influx of university students). Although traffic volumes are highest then as well, the number of severe crashes is overrepresented. See *Figure 14.*

Crashes by Day of the Week

Figure 15 shows that more crashes occur on Fridays than any other days of the week. Weekend crashes are considerably lower than weekday crashes and are underrepresented relative to traffic volume. Daily variation in crashes generally tracks with daily variation in traffic volumes.

Figure 14. Injury/Fatal Crashes by Month

Figure 16. Crashes by Time of Day

Crashes by Time of Day

Crashes per year are categorized by time of day in *Figure 16.* The most striking take away for this information is the higher occurrence than expected of crashes at noon and between 3 p.m. and 5 p.m. That is also the time when traffic volumes are highest, but the increase in crashes is not proportional to the increase in volumes. During the late night hours, crashes are proportional to traffic volumes.

CRASH INFORMATION BY DRIVER AGE

Figure 17 compares the number of crashes, by age of at-fault drivers with the percent of licensed drivers in that age category. Driver's aged 15-19 are almost three times as likely to be involved in a crash as would be expected given the number of licensed drivers in that age group. Driver's aged 20-24 are also more likely to be involved in crashes. All other age groups are under-represented in crashes.

This trend of higher numbers than expected of young drivers in crashes is not unique to Fort Collins. It does indicate the impact of driver inexperience as likely key factors in crashes and offers insight into potential countermeasures to address this challenge.

Teenagers represent 5% of all drivers but are involved in 15% of all crashes

Although older drivers are generally

underrepresented in crashes, there are certain types of crashes where they are overrepresented. *Figure 18* compares the types of crashes that older drivers (aged 65+) are involved in against the prevalence of those crashes among all drivers. Older drivers have higher numbers of approach turn crashes than what would be expected. An approach turn crash is a left turning crash that involves judging oncoming vehicle speeds and choosing an appropriate gap. These tend to be crashes that cause more injury due to higher speeds.

Figure 17. At Fault Drivers By Age

ALCOHOL INVOLVED CRASHES (DRIVERS UNDER THE INFLUENCE - DUI)

Figure 19 shows the number of alcohol involved crashes (also called DUI) over the past five years. The DUI crashes represent about 4% of all crashes. However, they account for 10% of severe crashes, and 31% of fatal crashes. This suggests that crashes involving alcohol are more likely to result in serious injuries or fatalities.

The general trend for DUI crashes in the past five years has been decreasing. Crashes were down significantly during the pandemic year of 2020. But comparing 2021 with 2017, overall DUI crashes are also down 29%, and severe crashes are down 43%.

Figure 19. DUI Crash Trends

Figure 20. DUI Crashes by Age of At Fault Driver

DUI Crashes by Age

Crashes in the past five years that involve DUI are shown in *Figure 20* by age of at-fault drivers.

Drivers below the age of 35 are significantly overrepresented in alcohol involved crashes relative to the number of licensed drivers in those age groups. Also surprising is that drivers 15 - 19 years old are involved in 6% of DUI crashes even though they have not reached legal drinking age.

MOTORCYCLE CRASHES

From 2017-2021 there were a total of 245 reported motorcycle crashes, including 12 fatalities. Although there was an increase in crashes during 2020, the general trend is downward in the last five years. See *Figure 21*.

While motorcycle crashes can follow the same patterns as other crashes, they tend to be more severe as shown *Figure 22*. Overall, only 24% of all crashes result in some type of injury while 80% of motorcycle crashes result in injury.

In a crash, motorcyclists are **3** times as likely to be injured and **16** times as likely to be killed than people in motor vehicles.

Figure 22. Severity Impact on Motorcycle Crashes

Motorcycle crashes have several idiosyncrasies that are different from traditional crash trends:

- They are the mode of travel that result in the highest percentage of severe crashes 61%. (In comparison, only 6% of motor vehicle crashes, 46% of bicycle crashes and 47% of pedestrian crashes are severe.)
- Motorcycle crashes are also the ones that involve the most nonintersection crashes – as 30% of all motorcycle crashes occur along roadway segments (typical percentages are 21%).
- In addition, 27% motorcycle crashes are single vehicle crashes (the typical percentage of single vehicle crashes is 11%).

The takeaway for motorcycle crashes is that they tend to be severe, and more frequently that other crashes occur as single vehicle non-intersection crashes.

CRASHES INVOLVING YOUTH

Crashes involving young people (aged 0-17) are of special interest. These crashes include crashes involving a young pedestrian, a young bicyclist, or a young motor vehicle driver. The data does not include youths that are passengers in vehicles involved in a crash.

Figure 23 shows the trends in crashes that involve youths. Like in many other instances, 2020 was an anomaly, but in general youth crashes are decreasing – overall crashes are down 24% in five years, and severe crashes are down 21%.

Figure 23. Trends for Crashes Involving Youths

Motorcycle Crashes:

30% Non-intersection

87% on arterials

27% Single Vehicle

The mode split for crashes involving youths is shown in *Figure 24.* Most of these crashes involve young drivers. Using five years of data, the average number of crashes per year involving youth are:

- 263 vehicle crashes
- 16 bicycle crashes

30

25

26

- 6 pedestrian crashes
- 2 motorcycle crashes

Figures 25, 26, and 27 show the trends in crashes involving youths by mode. Across all modes, the number of crashes involving young community members are generally trending down (discounting 2020).

Overall crashes involving

youths are down

24%

in the last five years.

Figure 24. Mode Split for Crashes Involving Youths

21

Figure 26. Crashes Involving Young Bicyclists

Figure 27. Crashes Involving Young Pedestrians

ECONOMIC IMPACT OF CRASHES

Using figures determined by the Federal Highway Administration and published in the Highway Safety Manual, an estimation of economic costs associated with crashes in Fort Collins can be made. The annual societal cost of traffic crashes in Fort Collins is about \$176 million. See *Table 1.* The crash costs shown are adjusted to reflect 2021 values. Crash costs include monetary losses associated with medical care, emergency services, property damage, and lost productivity. They also include costs related to the reduction in the quality of life related to injuries.

Societal cost of crashes in Fort Collins in 2021: **\$176 million**

A study completed by the National Highway Traffic Safety Administration (NHTSA) identified who pays the costs of the economic impact of crashes. The NHTSA study found that society at large pays for about 75% of all costs incurred for traffic crashes. Those costs are passed on to the public through insurance premiums, taxes, direct out of pocket payments for goods/services, and increased medical costs.

Crash Severity	Number of Crashes	Cost Per Crash	Societal Cost
Property Damage Crashes	2,211	\$ 11,500	\$ 25,426,500
Possible Injury Crashes	353	\$ 71,400	\$ 25,204,200
Non-Incapacitating Injury Crashes	250	\$ 127,000	\$ 31,750,000
Incapacitating Injury Crashes	60	\$ 347,800	\$ 20,868,000
Fatal Crashes	11	\$ 6,590,600	\$ 72,496,600
Total	2,885		\$ 175,745,300

Table 1. Economic Impact of Traffic Crashes in Fort Collins, 2021

COMPARISON TO OTHER CITIES

The most consistent way to compare Fort Collins' crash frequency with that of other cities is to compare the fatal crash rate (crashes per 100,000 population). Fatal crashes are used for this comparison as they are most consistently reported due to federal reporting requirements. *Tables 2 and 3* are sorted by fatal crash rate and compare Fort Collins to other cities in Colorado and also other peer cities nationwide with similar population (90,000 to 200,000).

Colorado crash data is from the Colorado Department of Transportation (CDOT). Crash data for communities outside Colorado (peer cities) was obtained from the National Highway Traffic Safety Administration's Fatal Accident Reporting System (FARS) which contains data through 2020. Population estimates are from the U.S. Census.

Colorado Cities								
City	Population	Fatal Crashes, 2017 - 2021						Fatal Crash Rate (Crashes /
		2017	2018	2019	2020	2021	Avg.	100,000 Pop.)
Pueblo	111,876	16	16	12	13	18	15	13.4
Lakewood	155,984	8	17	19	12	7	13	8.1
Greeley	108,795	11	9	4	13	2	8	7.2
Longmont	98,885	6	6	12	5	6	7	7.1
Fort Collins	169,810	13	9	8	10	11	10	6.0
Westminster	116,317	11	10	5	6	1	7	5.7
Thornton	141,867	9	1	13	8	3	7	4.8
Arvada	124,402	4	5	3	4	2	4	2.9
Boulder	108,250	0	2	2	3	4	2	2.0
Avg. CO Cities	126,243	8.7	8.3	8.7	8.2	6.0	8.0	6.3

Table 2. Fatal Crash Rate Comparison to Other Colorado Cities

Peer Cities								
City	Fatal Crashes, 2016-2020 *						Fatal Crash Rate (Crashes /	
		2016	2017	2018	2019	2020	Avg.	100,000 Pop.)
Springfield, MO	169,176	19	17	18	15	27	19	11.3
Boca Raton, FL	97,422	18	6	10	6	11	10	10.5
Norman, OK	128,026	6	9	9	5	12	8	6.4
Fort Collins, CO	169,810	8	13	9	8	10	10	5.7
Richardson, TX	119,469	10	4	5	5	9	7	5.5
Cedar Rapids, IA	137,710	8	5	9	9	5	7	5.2
Coral Springs, FL	134,394	13	7	3	4	8	7	5.2
San Angelo, TX	99,893	3	4	5	3	9	5	4.8
Broken Arrow, OK	113,540	4	7	7	3	4	5	4.4
Olathe, KS	141,290	7	3	6	6	3	5	3.5
Overland Park, KS	197,238	7	8	2	9	7	7	3.3
Bellevue, WA	151,854	3	2	1	4	4	3	1.8
Naperville, IL	149,540	4	3	1	3	2	3	1.7
Avg. Peer Cities	139,182	8.5	6.8	6.5	6.2	8.5	7.3	5.3

Table 3. Fatal Crash Rate Comparison to Similar Peer Cities Nationwide

* Note: 2020 is most current national data available

Section 3

REVIEW OF MOST FREQUENT SEVERE CRASH TYPES

As noted earlier, crashes are categorized into a variety of types. Definitions and explanations of those types are included in the introduction. This section provides a more detailed review of the most prevalent crash types that result in severe crashes (those that are categorized as involving non-incapacitating injury, incapacitating injury, or fatal crashes).

Figure 28 indicates the type of crashes that occur, both when evaluated among all crashes, and then only among severe crashes. There are six types of crashes that are responsible for 87% of all severe crashes (outlined in gold color in Figure 27. While rear end crashes see large numbers in both overall crashes and severe crashes, bicycle crashes and pedestrian crashes become a larger component of the severe crash picture and join approach turns, right angle and fixed object crashes as the most prevalent.

While all traffic crashes are of concern, those that occur most often with the more serious consequences are of special interest. (Note that motorcycle crashes are not separated as a type of crash type in this analysis and are discussed in Section 2.)

6 crash types are responsible for 87% of severe crashes: Approach Turn Bicycle Rear End Right Angle Fixed Object Pedestrian

Table 4 provides a numerical summary of the six crash types that are involved in highest number of severe crashes each year. These are the types of crashes that may have greater prospects for safety improvements and should be a key focus in the roadway safety program. Each one of these crash types is reviewed in more detail in subsequent pages.

Type of Crash	Ave. Number of Crashes / Year	Percent of Crashes that are Severe	Ave. Number of Crashes / Year that are Severe
Approach Turn	343	15.8%	54
Bicycle	108	46.0%	50
Rear End	1288	3.7%	47
Right Angle	460	10.1%	47
Fixed Object	308	9.4%	29
Pedestrian	41	47.3%	20

Table 4. Summary of Crash Types Involved in the Highest Number of Severe Crashes (Using 5 Years of Data: 2017-2021)

APPROACH TURN CRASHES

Approach turn crashes occur when someone turns left in front of oncoming traffic without yielding the right of way. There are two main causes of approach turn crashes:

<u>Poor estimation of distance / speed of</u> approaching through traffic: These crashes

occur at both signalized and unsignalized intersections. Poor visibility – often the result of offset left turn lanes – also contribute to these crashes.

Inappropriate response to the onset of the yellow or red signal display: This situation can occur at signalized intersections where permissive left turns are allowed. A driver waiting to turn left on the green ball or flashing yellow arrow is required to yield the right of way to opposing through traffic. When the traffic signal turns yellow and/or red, some left turning drivers assume that oncoming traffic will stop and so they turn in front on oncoming traffic.

Figure 29 shows the 10 year historic trend of approach turn crashes in Fort Collins. The total number of crashes is relatively stable (discounting the 2020 pandemic anomaly), however the number of severe approach turn crashes is up 45% in the last five years.

A review of the last three years of data shows that 91% of approach turn crashes occur at intersections, and 96% occur on the arterial road system. With the highest number of severe crashes in the city in this category, a priority for safety focus should be targeted countermeasures for this type of crash discussed later in this report.

Approach Turn Crashes 343 crashes each year 15.8% are severe

Table 5 lists the locations with the greatest number of approach turn crashes in the last three years (2019-2021). Note that this list is sorted by the number of crashes and therefore locations with higher traffic volumes will also tend to have higher numbers of crashes. The pattern recognition section later in this report identifies locations of higher-than-expected approach turn crashes based on a statistical evaluation called 'probability of exceedance'. A combination of the two lists should be used to determine locations for further reviewed.

Facility ID	North - South Street	East - West Street	# AT Crashes in 3 years
35	College Ave	Troutman Parkway	28
111	Shields St	Horsetooth Rd	19
144	Timberline Rd	Drake Rd	19
119	Shields St	Prospect Rd	17
10	College Ave	Drake Rd	16
25	College Ave	Mulberry St	15
34	College Ave	Trilby Rd	15
59	Lemay Ave	Drake Rd	15
69	Lemay Ave	Riverside Ave	15
108	Shields St	Drake Rd	15
134	Taft Hill Rd	Drake Rd	15
<mark>6</mark> 8	Lemay Ave	Prospect Rd	14
4	College Ave	Boardwalk Dr	12
110	Shields St	Harmony Rd	11
7290	College Ave	Mason/Palmer	11
1	Boardwalk Dr	Harmony Rd	10
<mark>6</mark> 3	Lemay Ave	Horsetooth (West)	9
80	Mason St	Harmony Rd	9
239	Snow Mesa Dr	Harmony Rd	9
6591	College Ave	Lake St	9
Notoo			

Table 5. Locations with Most Approach Turn (AT) Crashes

Notes

Table is sorted by number of approach turn (AT) crashes

Locations included with at least 9 approach turn (AT) crashes in three years (20 locations total) Additional locations may be identified through statistical analysis

BICYCLE CRASHES

The City of Fort Collins is well known for its bike culture, and there is a strong focus on encouraging increased riding. Bike safety is an important component of supporting these efforts. This section analyzes reported bicycle crashes, which typically involve a bicycle and a motor vehicle.

Figure 30 shows the historic trend of bicycle crashes in Fort Collins during the past ten years. The general trend is decreasing numbers of bike crashes, with overall crashes down 30% in five years, while severe crashes consistently account for between 50-60 crashes each year (discounting the pandemic year).

Overall, bicycle crashes account for 3.2% of all crashes in Fort Collins. However, they account for 17.4% of severe crashes. This illustrates that bicycle crashes, when they do occur tend to be more serious than motor vehicle crashes. The comparison in severity is depicted in *Figure 31*. Bicycle Crashes 108 crashes each year 46.0% are severe

Figure 31. Severity Impact on Bicycle Crashes

The numbers related to severe bicycle crashes are shown in *Figure 32*. Non-Incapacitating crashes vary significantly from year to year, while incapacitating injury crashes have consistently been increasing since 2018.

Figure 32. Numbers of Severe Bicycle Crashes

Figure 33. Bicycle Crashes by Age of Rider

When bicycle crashes are reviewed by the age of the bicyclist, (see *Figure 33*), it is clear that bicyclists aged 15-34 are the most frequently involved. The figure also includes the percentage of population in that age category. People aged 15-34 account for about 43% of the population but are represented in 55% of bicycle crashes. (It should be noted that some crash reports involving a bicyclist do not list the age of the bicyclist, and as such those numbers are not included in *Figure 33.*)

Male cyclists are involved in 71% of all bicycle crashes.

Bicycle crashes can be further evaluated by location. See *Figures 34 and 35*.

Figure 34. Bicycle Crashes by Location

The location of greatest risk for bicycle riders is not along various road segments (9% of bicycle crashes), but rather at locations where crossing traffic occurs such as driveways and intersections (88%).

While corridor projects such as wider bicycle lanes and features to increase comfort such as buffers and protected bicycle lanes support bicycling mobility and increase perceived safety, an emphasis on intersection safety for bicyclists is critical to reducing the number and severity of bicycle crashes.

In addition, 88% of bicycle crashes occur on the arterial roadway system, so similar to the trend in overall crashes, the priority locations for bike safety improvements should be arterial intersections.

Figure 38 is the citywide heat map of bicycle crash locations in the last three years (2019-2021).

Figure 36 shows the types of bicycle crashes that have occurred in Fort Collins in the past five years. Depictions of the three most frequent types of bicycle crashes are shown in *Figure 37* and represent 81% of all bicycle crashes. Right angle crashes are the most common type representing more than half of all bicycle crashes.

A significant contributing circumstance in bicycle crashes and especially right angle crashes involves the bicyclist riding against traffic (on sidewalk or in the street). In these instances, motorists often do not see the bicyclist as they may be looking to the left, and not to the right. Twenty-three (23%) of all crashes and 36% of right angle crashes involve bicyclists traveling against traffic.

86% on arterials

Figure 36. Types of Bicycle Crashes

Figure 37. Visual Depiction of Types of Bicycle Crashes

Table 6 lists the location with the highest number of bicycle crashes in the past three years. Note that this list is sorted by the number of crashes and therefore locations with higher volumes (whether vehicle volumes or bicycle volumes) will also tend to have higher numbers of crashes. The pattern recognition section later in this report identifies locations of higher-than-expected bicycle crashes based on a statistical evaluation called 'probability of exceedance'. A combination of the two lists should be used to determine locations for further review.

23% of bicycle crashes involve bicyclists traveling against traffic

Facility ID	North - South Street	East - West Street	# Bicycle Crashes in 3 years
111	Shields St	Horsetooth Rd	4
25	College Ave	Mulberry St	3
118	Shields St	Plum St	3
119	Shields St	Prospect Rd	3
142	Timberline Rd	Caribou Dr	3
15359	Centre Ave	Prospect Rd	3
8562	Overland Trail	Drake Rd	3
113	Shields St	Lake St	3
7	College Ave	Cherry St	2
16	College Ave	Horsetooth Rd	2
19	College Ave	LaPorte Ave	2
32	College Ave	Stuart St	2
64	Lemay Ave	Lincoln Ave	2
78	Loomis Ave	Mulberry St	2
79	Manhattan Ave	Horsetooth Rd	2
101	Remington St	Mulberry St	2
102	Remington St	Pitkin St	2
108	Shields St	Drake Rd	2
110	Shields St	Harmony Rd	2
140	Taft Hill Rd	Prospect Rd	2
146	Timberline Rd	Horsetooth Rd	2
155	Whitcomb Ave	Prospect Rd	2
556	Matthews St	Mountain Ave	2
42	Dunbar Ave	Drake Rd	2
72	Lemay Ave	Swallow Rd	2
6664	McClelland Dr	Horsetooth Rd	2
129	Stover St	Horsetooth Rd	2
15993	Linden St	Vine Dr	2
231	Peterson St	Mulberry St	2
15995	Shields St	University Ave	2

Table 6. Locations with Most Bicycle Crashes

Notes

Table is sorted by number of bicycle crashes

Locations included with at least 2 bicycle crashes in three years (30 locations total)

Additional locations may be identified through statistical analysis

Figure 38. Bicycle Crash Heat Map (2019-2021)

REAR END CRASHES

Rear end crashes are the most prevalent crash type in Fort Collins, accounting for 39% of all crashes with an average of 1,288 crashes each year. Only 3.7% of rear end crashes are considered severe and involve a non-incapacitating injury, incapacitating injury or fatality. However, because of the sheer number of these types of crashes, they are an important element to consider in safety reviews.

The majority (66%) of rear end crashes occur at signalized intersections. Ten percent (10%) of rear end crashes occur mid-block.

The 10-year historic trend for rear end crashes is shown in *Figure 39*. The total number of rear end crashes is down 50% from a high in 2015. Severe rear end crash number are quite steady.

Table 7 lists the locations with the greatest number of rear end crashes in the three-year period. Note that this list is sorted purely by the number of crashes and therefore locations with higher volumes will also tend to

Figure 39. Historic Trend of Rear End Crashes

have higher numbers of crashes. The pattern recognition section later in this report identifies locations of higherthan-expected rear end crashes based on a statistical evaluation called 'probability of exceedance'. A combination of the two lists should be used to determine locations for further review.

Facility ID	North - South Street	East - West Street	# RE Crashes in 3 years
14	College Ave	Harmony Rd	76
145	Timberline Rd	Harmony Rd	73
10	College Ave	Drake Rd	57
1	Boardwalk Dr	Harmony Rd	53
149	Timberline Rd	Prospect Rd	53
162	Lemay Ave	Harmony Rd	52
34	College Ave	Trilby Rd	43
16	College Ave	Horsetooth Rd	42
28	College Ave	Prospect Rd	40
40	Corbett Dr	Harmony Rd	40
25	College Ave	Mulberry St	36
66	Lemay Ave	Mulberry St	36
119	Shields St	Prospect Rd	36
143	Timberline Rd	Carpenter Rd	35
68	Lemay Ave	Prospect Rd	34
80	Mason St	Harmony Rd	33
74	Lemay Ave	Vine Dr	32
157	Ziegler Rd	Harmony Rd	30

Table 7. Locations with Most Rear End (RE) Crashes

Notes

Table is sorted by number of rear end (RE) crashes

Locations included with at least 30 rear end crashes in three years (18 locations total) Additional locations may be identified through statistical analysis

Rear end crashes are typically the result of motorist inattention, and/or following too closely combined with unexpected stops in the traffic stream. Care must be taken to avoid increasing rear end crash potential by implementation of countermeasures intended to reduce other types of crashes. For example, installation of traffic signals, or the addition of protected only left turn signal phasing at existing traffic signals are countermeasures that may be used to reduce right angle of left turn crashes. However, they also tend to increase the potential for rear end crashes. Since right angle and approach turn crashes tend to be more severe, it may be reasonable to implement these countermeasures, but careful analysis and consideration regarding the impact on rear end crashes is critical to effective overall safety improvements.

RIGHT ANGLE CRASHES

Right angle crashes occur at intersections when vehicles arrive on perpendicular roads and collide. There are two main types of right angle crashes – one where entering traffic has stopped and then proceeds inappropriately into the intersection, and one where entering traffic disregards a stop sign or signal.

<u>Failure to yield after stopping</u>: Typical contributing factors to these crashes include sight obstructions such as fences, trees, shrubs, parked cars, or approaching vehicles that prevent the stopped driver from seeing conflicting traffic.

Passing a signal/STOP without stopping: Typical contributing factors to these crashes include inattention, visibility of signal heads or STOP signs, wide streets and/or "busy" areas where traffic control devices become less noticeable, and icy roads.

Figure 40 shows the historic trend for right angle crashes in Fort Collins. There has been a significant reduction in right angle crashes since 2016 (down 40%). Severe right angle crash numbers are similar from year to year.

Figure 41 shows that almost two-thirds (62%) of right angle crashes occur when someone stops but then proceeds into oncoming traffic. Most the remaining crashes (36%) are the result of a motorist running a red light or stop sign.

Table 8 lists the locations with the greatest number of right angle crashes in the three-year period. Note that this list is sorted purely by the number of crashes and therefore locations with higher volumes will also tend to have higher numbers of crashes. The pattern recognition section later in this report identifies locations of higher-than-expected right angle crashes based on a statistical evaluation called 'probability of exceedance'. A combination of the two lists should be used to determine locations for further review.

Right Angle Crashes 460 crashes each year 10.1% are severe

Figure 40. Historic Trend of Right Angle Crashes

Figure 41. Right Angle Crashes by Type

Facility ID	North - South Street	East - West Street	# RA Crashes in 3 years
25	College Ave	Mulberry St	13
111	Shields St	Horsetooth Rd	13
6666	Mason St	Horsetooth Rd	13
145	Timberline Rd	Harmony Rd	12
80	Mason St	Harmony Rd	11
5209	Redwood St	Conifer St	11
6417	Timberline Rd	Vine Dr	11
59	Lemay Ave	Drake Rd	10
103	Remington St	Prospect Rd	9
119	Shields St	Prospect Rd	9
140	Taft Hill Rd	Prospect Rd	9
10711	Mason St	Magnolia St	9
Notes			

Table 8. Locations with Most Right Angle (RA) Crashes

Notes

Table is sorted by number of right angle (RA) crashes

Locations included with at least 9 right angle crashes in three years (12 locations total) Additional locations may be identified through statistical analysis

FIXED OBJECT CRASHES

Fixed object crashes are predominantly single vehicle crashes (97%) where a driver collides with a fixed roadway feature such as a curb or a median or runs off the road and hits a roadside feature such as a tree, fence or utility pole. Eighty percent (80%) occur on the arterial road system.

Figure 42 shows the historic trend for fixed object crashes. Like many other crash types, the general trend is a reduction in crashes since about 2015 (with the exception of 2019). Severe fixed object crash numbers are stable.

Fixed object crashes are the crash type that occurs least frequently at intersections. Forty-one percent (41%) of fixed object crashes are identified as non-intersection crashes.

Minor fixed object crashes often occur in inclement weather. However, the other main contributor to these types of crashes, especially the higher speed crashes resulting in greater severity, is alcohol. 17% of all fixed object crashes involve alcohol. For severe crashes the percentage related to alcohol goes up to 34%. Fixed Object Crashes **308** crashes each year **9.4%** are severe

■ Total Fixed Object Crashes ■ Severe Fixed Object Crashes

Figure 42. Historic Trends of Fixed Object Crashes

17% of all fixed object crashes involve alcohol 37% of all severe fixed object crashes involve alcohol

PEDESTRIAN CRASHES

Pedestrian crashes account for only 1.1% of all crashes; however, represent 6.9% of severe crashes. When pedestrian crashes occur, almost half (47%) will involve an injury or fatality. There have been seven (7) fatal pedestrian crashes in the last three years.

Figure 43 shows the historic trends of pedestrian crashes in the last ten years in Fort Collins. The variability in pedestrian crash numbers from year to year is quite high partially due to the relatively small

numbers, so care should be taken in looking for patterns or trends. Pedestrian crash numbers are quite steady, lower than highs seen in 2015, but severe crashes have increased in the past five years.

Figure 44 shows the breakdown of severe pedestrian crashes by year for the past five years.

Figure 43. Historical Trends of Pedestrian Crashes

Figure 45. Pedestrian Crashes by Location

Figure 46. Pedestrian Crashes by Road Classification (2019-2021)

Figure 44. Numbers of Severe Pedestrian Crashes

Arterial Roadway

83%

Collector / Local

Roadway 17%

Categorizing locations of pedestrian crashes helps to understand locations of greatest interest in terms of pedestrian safety. *Figures 45 and 46* indicate where pedestrian crashes are occurring. Most pedestrian crashes occur at arterial intersections. As these major intersections are reviewed for operational and safety improvements, pedestrian safety is a critical component to consider.

Figure 47 shows the age of pedestrians involved in crashes. Pedestrians who are 15-19 are slightly overrepresented in crashes, while pedestrians aged 25-34 are the significantly overrepresented. Pedestrians aged 25-34 account for 24% of pedestrian crashes but represent only 17% of the population.

It should be noted that 26% of crash reports involving a pedestrian do not list the age of the pedestrian, and as such those numbers are not included in *Figure 47.*

When pedestrian crashes are categorized by gender of the pedestrian that was struck, males are disproportionately represented when compared to the overall population. Males are involved in 61% of pedestrian crashes. See *Figure 48.*

Crashes are categorized into a variety of types, and their prevalence in pedestrian crashes are shown in *Figure 49*. The definitions and explanation of some common types of pedestrian crashes are described below:

Motorist Fails to Yield at Signalized Intersection

Crashes at signalized intersections where a pedestrian legally crossing the street is hit by a motorist. These crashes often involve a turning driver whose attention is diverted.

Motorist Fails to Yield at Unsignalized Intersection

Crashes where a pedestrian legally in the street is hit by a driver who does not yield the right of way. These crashes often involve a turning driver whose attention is diverted

Motorist Fails to Yield at Unsignalized Intersection

Crashes where a pedestrian legally in the street is hit by a motorist who does not yield the right of way. These crashes often involve a turning motorist whose attention is diverted.

Motorist Fails to Yield while Exiting a Driveway

Crashes that involve motorists crossing a sidewalk in the process of exiting a driveway to a public street and striking a pedestrian on the sidewalk crossing the driveway.

Dart Out

Crashes where a pedestrian enters the street in front of an approaching motorist who is too close to avoid a collision.

Pedestrian Crosses Against Signal

Crashes at signalized intersections involving a pedestrian crossing against the signal indication.

Pedestrian Fails to Yield at Uncontrolled Locations

Figure 49. Pedestrian Crashes by Type

At non-crosswalk locations pedestrians must yield to motorists prior to crossing. These crashes involve pedestrians who attempted to cross without waiting for a safe break in traffic. Many of these crashes occur at night when pedestrians are less visible to motorists.

Pedestrian Standing/Walking in Road

Pedestrian walking on the road but not attempting to cross is struck by a motorist.

Table 9 lists the locations with the greatest number of pedestrian crashes in the three-year period. Note that this list is sorted by the number of crashes and therefore locations with higher volumes (both motor vehicle volumes and pedestrian volumes) will also tend to have higher numbers of crashes. The pattern recognition section later in this report identifies locations of higher-than-expected pedestrian crashes based on a statistical evaluation called 'probability of exceedance'. A combination of the two lists should be used to determine locations for further review.

Facility ID	North - South Street	East - West Street	# Pedestrian Crashes in 3 years
7	College Ave	Cherry St	3
25	College Ave	Mulberry St	3
32	College Ave	Stuart	3
84	Mason St	Mulberry St	3
1	Boardwalk Dr	Harmony Rd	2
20	College Ave	Laurel St	2
31	College Ave	Spring Park	2
58	Lemay Ave	Doctors Ln	2
101	Remington St	Mulberry St	2
119	Shields St	Prospect Rd	2
36	College Ave	Vine Dr	2

Table 9. Locations with Most Pedestrian Crashes

Table is sorted by number of pedestrian crashes

Locations inlcuded with at least 2 pedestrian crashes in three years (11 locations total) Additional locations may be identified through statistical analysis

Comparing Daytime and Nighttime Pedestrian Crashes

A comparison between daytime and nighttime crashes offers an opportunity to better understand how the dynamics of pedestrian crashes change depending on lighting conditions.

d 10

In general, nighttime crashes are more severe, and much more likely to occur mid-block.

Four of the seven pedestrian fatalities in the last three years occurred at night.

大 & 司 🔒

Fatal Pedestrian Crashes

There have been seven fatal pedestrian crashes in the last three years. Circumstances involving the crashes vary, and the locations are scattered throughout Fort Collins without a particular pattern. However, a few items that can be noted from the data are shown below and may help in the identification of potential mitigation measures, including education.

_ _ _ _

- Six of the seven occurred on the arterial system.
- Six of the seven were in locations NOT related to an intersection (generally midblock).
- Six of the seven pedestrians were male.
- Four of the seven occurred at night (all of them midblock).

Figure 50 shows the location of pedestrian crashes in the last three years.

Section 4 INTERSECTION EVALUATION

Most of this report is a summary of the numbers, types, and patterns of crashes. This information can be used to identify overall trends and help to understand general mitigation and safety efforts throughout the City. The next element is to use the crash data to identify specific locations for potential improvements.

Total crash numbers at any location (either in a chart or through crash density maps (heat maps) included in previous sections of this report) identify the locations where the most crashes occur. While helpful, because volumes and other elements at specific locations vary widely, it is difficult to draw relevant conclusions from this data. Therefore, an additional analysis is conducted to identify intersections where there are more crashes than expected considering traffic volumes, roadway geometry, type of traffic control, etc.

INTERSECTIONS BY EXCESS CRASH COST

To identify locations with the most potential for crash reduction, it is important to use methods that account for traffic volumes, roadway geometry, and type of control at intersections as those factors have an impact on the number of crashes at a given location.

It is also necessary to acknowledge that even though traffic crashes are partially deterministic (i.e., factors affecting crash potential can be controlled), crashes are, to some extent, random events. This random nature of crashes can make it more difficult to determine if a location is truly a problem versus a location where normal variation led to a high crash frequency during the analysis period. To identify locations that warrant further investigation it is helpful to use a methodology that accounts for the somewhat random nature of crashes.

In 2010 the Transportation Research Board (TRB) and the American Association of State Highway and Transportation Officials (AASHTO) published the <u>Highway Safety Manual</u> (HSM). The HSM includes a statistical approach that considers traffic volumes and intersection types while also accounting for the natural fluctuation of data called regression to the mean. The result is the identification of locations that have a higher-than-expected crash frequency even after accounting for random variation.

Crash Prediction Models

The method in the Highway Safety Manual that is applied for this evaluation uses crash prediction models to predict the number of crashes at each location given traffic volumes, roadway geometry, and type of control at each intersection. The predictions are compared to the actual number of crashes at each location (adjusted to account for regression to the mean). The more the actual adjusted number of crashes exceeds the number of predicted crashes (expressed as excess crash cost) the more likely it is that a location might benefit from targeted improvements.

Several crash prediction models were considered including those found in the Highway Safety Manual 1st edition, models developed for the Colorado Department of Transportation (CDOT) in 2009, and models developed for CDOT in 2018. Model results were compared to actual Fort Collins crash data and the models that best matched the data in each intersection category were selected for use (see *Table 10*).

Number of Legs *	Type of Control	Model Used	Table 1
3	Stop Controlled	CDOT 2018	Model
4	Stop Controlled	CDOT 2018	Analys
3	Signalized	CDOT 2018	Interse
4	Signalized	CDOT 2009 (total crashes) 2018 (injury crashes	
All	Roundabout	NCHRP 888	

Fable 10. PredictionModel Used in theAnalysis for Eachntersection

* Legs: Segments of roadway connected to an intersection

Traffic Volumes

Traffic volumes in Fort Collins were down in 2020 by about 20% due to COVID-19. To account for this, three-year average traffic volumes used for analysis at each location were reduced by 7% to account for the reduced volumes in 2020.

Average ADT over three years = (V + V + 0.8V)/3 = 0.93V = -7%

This analysis was completed for about 300 intersections in Fort Collins using three years of data (2019-2021). The evaluation shows that 38% have an excess crash cost and 62% have a negative crash cost (indicating less crashes than predicted). This means that when aggregated and averaged, intersections in Fort Collins have less crashes and/or severity than what would be predicted.

Table 11 shows the 50 intersections with the greatest excess crash costs (grey highlighted column). Since injury crashes have higher crash costs associated with them, the ranking method gives more weight to locations with more injury crashes compared to locations with primarily "fender benders".

62% of intersections in Fort Collins have fewer crashes than what would be predicted

LEVEL OF SERVICE OF SAFETY (LOSS)

While excess crash cost is a quantitative approach, CDOT uses a similar but more qualitative approach to identify locations with more crashes than expected termed Level of Service of Safety (LOSS). LOSS is a scale from 1 – 4. LOSS 3 and 4 indicate locations with an above average number of crashes and above the 85th percentile number of crashes respectively compared to estimates from a crash prediction model. Calculation of LOSS was completed in this review and results are included in **Table 11**. LOSS is included as it may identify some additional intersections – especially with lower volumes -- that may warrant further investigation. It also gives the City information needed to determine locations that may score favorably in the review process for CDOT safety funds.

TRENDS IN INTERSECTION SAFETY

In addition to identifying intersections with higher-than-expected crash numbers and severity, reviewing crash trends can identify changing conditions and safety at specific locations. **Table 11** lists the change in excess crash costs both positively and negatively. As noted earlier, the base calculation includes three years of data (2019-2021) and the comparison is against the previous three years of data (2016-2018). The comparisons are done to account for the volume changes in the "after" period related to COVID. Locations with more significant improvement in safety trends are shaded green, while locations with increasing excess crash costs are shaded in red. Note that in locations with few crashes, a single injury/fatal crash can create a pronounced swing in excess crash costs. In these cases, judgment is needed to determine whether a trend is significant or not.

Image: product of the produc	Fac	North-Sout	rsection	Traffic Vol		ted Crashes	ctual Adjus	ted Crashes	Excess (Crashes (#	and Costs)	_	OSS	Crash Trends		Type	e Rank
Image: contract of the part of	Π		Fact Most			i	-	i		1	EXCESS		-				
Image: property interview Im			Edist-west Street	Total		Ξ		Expected FI Crashes/ Year		Excess	Expected Crash Value	Total		2016-2018 VS 2019-2021 Δ Crash Cost		Contr	0
Image: properting the state of the	34	College Av	Trilby Rd	45,174		4.3	24.2		4.8	2.7	\$576,638			-\$68,79	35 Protected Lefts in 2020,	4SG	-
Operation Operation <t< td=""><td>111</td><td>Shields St</td><td>Horsetooth Rd</td><td>45,589</td><td>17.</td><td>4.7</td><td>22.3</td><td>7.1</td><td>2.4</td><td>2.5</td><td>\$498,125</td><td></td><td>LOSS</td><td>\$649,20</td><td>20</td><td>4SG</td><td>2</td></t<>	111	Shields St	Horsetooth Rd	45,589	17.	4.7	22.3	7.1	2.4	2.5	\$498,125		LOSS	\$649,20	20	4SG	2
Image: contract interaction (contract) Image: contract interaction (contract) <thimage: contract<="" th=""> Image: contract interaction (co</thimage:>		College Av	Drake Rd	68,433		5.6	31.5	8.2	-1.8	2.6	\$471,663				50 Funded Project	4SG	3
Image: contract integration (contract) Image: contract integration (contract) <thimage: contrac)<="" th=""> Image: contract integration (co</thimage:>	noit		Harmony Rd	55,037		4.3	24.2	6.4	3.8	2.1	\$438,886		-	-\$64,92		_	-
Image: contract in the state of th	bəs		Prospect Rd	46,739		4.9	23.3	7.0	3.3	2.1	\$438,869		-	\$3,45	53 Red Light Cameras in 2020, crashes trending down	_	+
Image: constrained by the strained by t	rer	College Av	Mulberry St	49,330		5.1	27.0	7.0	6.1	1.9	\$433,681	_	-	\$481,00		4SG	+
Image: space		Lemay	Vine	20,363		1.7	12.1	3.4	5.5	1.7	\$383,897	-	-+	\$55,35		4SG	~
Image: contract in the state in th	118		Plum	32,196		2.0	11.9	3.7	1.9	1.7	\$350,457		LOSS	\$287,79	95	4SG	**
Image: project in the state in the	29	Lemay	Drake Rd	48,728		5.0	19.3	6.8	-1.1	1.7	\$316,493		_	-\$252,31		4SG	6
Image: contract interment of the contract inter	143	Timberline Rd	Carpenter	26,800		2.6	13.0	3.9	3.9	1.3	\$292,987		-	-\$242,65	50 Funded Project	4SG	9
Image: contract in the	162		Harmony Rd	60,171		4.9	23.5	6.5	-0.8	1.6	\$292,584		LOSS	ľ	-		11
Image: contract bial Image: co	80	Mason St	Harmony Rd	36,814		3.0	17.4	4.1	4.7	1.1	\$259,595		LOSS				12
	18	College Av	Kensington	37,260		2.7	8.8	3.9	0.4	1.2	\$233,382					4SG	-
Image: contract of the	55	JFK	Harmony Rd	46.531	,	3.1	12.5	4.3	-2.0	1.3	\$225,055			\$468.28	80	4SG	14
Nome Nome <th< td=""><td></td><td></td><td>Custer</td><td>29.579</td><td></td><td>0.8</td><td>7.4</td><td>1.8</td><td>1.9</td><td>1.0</td><td>\$206,581</td><td>_</td><td>-</td><td>\$125,14</td><td>45</td><td>4SG</td><td>-</td></th<>			Custer	29.579		0.8	7.4	1.8	1.9	1.0	\$206,581	_	-	\$125,14	45	4SG	-
Control Control <t< td=""><td>suc</td><td></td><td>Troutman</td><td>42.276</td><td>Ì</td><td>3.4</td><td>13.8</td><td>4.3</td><td>17</td><td>60</td><td>\$185.912</td><td>_</td><td>-</td><td></td><td></td><td>48G</td><td>-</td></t<>	suc		Troutman	42.276	Ì	3.4	13.8	4.3	17	60	\$185.912	_	-			48G	-
Image: contract in the state in th	ctic		Trilby Rd	24 445		2.3	86	3.1	2.3	80	\$183 553		-			45G	
Image: contract in the second in th	əs.		Mulherry St	26.805			0	27	1 1	a c	\$181 758	_	-	¢63 55	53		+
1 1 1 2 1 2 1 2	ıəti		Mulberry St	20,000		0.	1.00	1.2	000		\$101,130			-00.00	2		+
Image: constrained between the propertication of the propropertication of the propertication of the propertic				20,020		4.2	0.01	2.0	0.7	0.0	\$110,430		-	\$14,00	26	5 0 0	-
meter meter <th< td=""><td>1 1</td><td></td><td></td><td></td><td></td><td>t o</td><td></td><td>t t</td><td></td><td>0.0</td><td>-11'001¢</td><td></td><td>+</td><td>ľ</td><td></td><td></td><td>+</td></th<>	1 1					t o		t t		0.0	-11'001¢		+	ľ			+
memory chance control col col<	/		Cherry	30,868		3.2	971	4.0	-0.3	2 C	\$143,432 6407 ECC			\$276,27 #400.70	20	456	+
Immerine Recent 2201 0 7713-00 LOSS LOSS Recent Cost Recent	8000		Kichmond	31,097		1.0	4.6	1.3	0	9.0	\$137,000		LUSS	3189,		451	+
Nu Component 55:40 9 7 7 10 67:70:500 10:550 57:700 10:500 10:550 57:700 10:500	8836	_	Kechter	23,078		1.7	9.2	2.2	2.9	0.5	\$131,380		LOSS	Ÿ	Funded	4SG	+
No. Contraction 55:00 1 0:0 7:10:00 0:0 7:10:00 0:0 7:10:00 0:0	9402		Carpenter	20,940		1.8	6.2	2.5	0.3	0.6	\$126,059		_		08	4SG	
Metricine 05:10 11 05 61:17:27 0:05:3	00		Columbia	45,829		3.2	0.0	4.0	-1.4	0.7	\$120,569		-	\$183,12	29	4SG	╉
Numeric 301	8432		Bristlecone	25,180		0.5	2.6	1.1	0.6	0.6	\$113,778		-	\$109,01	19	3ST	+
R Norpect red 03/3	37		Willox	30,519		2.9	12.6	3.3	2.4	0.4	\$110,259		-	\$159,80			
Name Solution 29,47 1 0 0 50010 0.055 0.0563 0	149		Prospect Rd	53,434		5.5	24.9	5.8	3.4	0.3	\$105,998		_			+	+
Incluin Filter Sector Cost Sector	72	Lemay	Swallow	29,477		1.3	5.7	1.8	0.4	0.5	\$99,185		_		84	33G	_
Incont 15.82 17 0.1 55.82 1.05 1.05 360.36 Montention 366.36 1.05 360.36 Montention 366.36 1.05 360.36 Montention 366.36 1.05 360.36 1.05 360.36 1.05 360.36 1.05 360.36 1.05 360.36 1.05 360.36 1.05 360.36 1.05 360.36 1.05 360.36 1.05 360.36 1.05 360.36 1.05 360.36 1.05 360.36 1.05 360.36 1.05 360.36 1.05 360.36 1.05 360.36 1.05 360.36 1.05 <t< td=""><td>62</td><td></td><td>Horsetooth (East)</td><td>40,597</td><td></td><td>2.2</td><td>9.7</td><td>2.6</td><td>2.1</td><td>0.3</td><td>\$90,991</td><td>_</td><td>-</td><td>,</td><td></td><td>33G</td><td>+</td></t<>	62		Horsetooth (East)	40,597		2.2	9.7	2.6	2.1	0.3	\$90,991	_	-	,		33G	+
Rig Minimit 31,300 Ci 17 0.0 33,472 1.0553 32,1600 Model Mo	9380		Lincoln	16,582		0.7	6.3	0.0	4.6	0.2	\$88,724		-			4ST	
s Mulery 56.12 22 07 35 10 14 054 1058 158.02 158.02 molecy 54.47 16 05 33 00 14 03 53.18.02 53.18.02 molecy 14.7 16 05 33 00 14 0.3 58.399 1058 5.4.303 1058 5.4.303 1058 5.4.303 1058 5.4.303 1058 5.4.303 1058 5.4.303 1058 5.4.303 1058 5.4.303 1058 5.4.3.33 105 10 11 10 11 10 12 10 11 10 11 10 11 10 11 10 11 10 11 10 10 10 10 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <th10< th=""> <th10< th=""> 10</th10<></th10<>	152		Vermont	31,899		1.2	6.9	1.7	0.5	0.4	\$87,921		-		00	4SG	+
Øliete 24.457 14 0.5 30 09 1.3 0.4 \$53.895 LOSS 4 LOSS 3 54.922 Aiv Vine 34.65 57 1.5 7.4 1.9 1.4 0.3 \$53.916 LOSS 4 \$53.93 S13.916 LOSS 4 \$2.30 S13.11 S13.12 S13.13 S13.12 S13.13 </td <td>9986</td> <td></td> <td>Mulberry</td> <td>26,122</td> <td></td> <td>0.7</td> <td>3.5</td> <td>1.0</td> <td>1.0</td> <td>0.4</td> <td>\$84,074</td> <td></td> <td>-</td> <td>-\$18,8(</td> <td>02</td> <td>4ST</td> <td>+</td>	9986		Mulberry	26,122		0.7	3.5	1.0	1.0	0.4	\$84,074		-	-\$18,8(02	4ST	+
of Drate 14.75 16 0.5 3.3 0.05 5.32.05 LOSS 4 S.220 Safety pretictioneliet, positive trend Aw Nine 2.46 7.1 7.1 7.1 7.1 7.1 7.3 7.3 Safety for LoSS 4 S.220 Safety pretictioneliet, positive trend Aw Nine 2.46 7.3 7.1 2.2 0.7 0.3 Safety for LoSS 4 S.220 Safety pretictioneliet, positive trend Awson/Falmer 2.40 7.3 2.44 0.3 Safety for LoSS 4 S.230 Safety pretictioneliet, positive trend Mason/Falmer 2.41 0.5 9.7 0.3 Safety for LoSS 4 S.230 Safety pretictioneliet, positive trend Mason/Falmer 41.65 0.5 0.7 2.9 0.3 Safety pretictioneliet, positive trend Mason/Falmer 41.65 0.6 6.2 0.7 3.9 5.6 3.7 5.2 5.6 3.7 3.7 3.7 Mason/Falmer 16.23 1.3	6171		Drake	24,457		0.5	3.0	0.0	1.3	0.4	\$83,893	_	_	\$34,93		3ST	
Av Vine 34.06 57 15 74 19 13 Stift Add Stift Stift Cashes Stift Add Stift Add Stift Add Stift Stift Add Stift Stift Stift Stift Add Stift Stift <td>8562</td> <td></td> <td>Drake</td> <td>14,757</td> <td></td> <td>0.5</td> <td>3.3</td> <td>0.8</td> <td>1.4</td> <td>0.3</td> <td>\$82,376</td> <td></td> <td>-</td> <td>\$2,20</td> <td>Safety project completed,</td> <td>3ST</td> <td>35</td>	8562		Drake	14,757		0.5	3.3	0.8	1.4	0.3	\$82,376		-	\$2,20	Safety project completed,	3ST	35
East int) Prospect 25.433 19 0.5 37 0.61 7.3 27.340 27.342 Rust 30613 7.3 1 7 0 37.340 10053 57.340 0 37.340 0 37.340 0 37.340 0 37.340 0 37.356 0 37.356 0 37.356 0 37.356 0 37.356 0 37.356 0 37.356 0 37.356 0 37.356 0 36.37.556 0 0 36.361	ဖွ	College Av	Vine	34,058		1.5	7.4	1.9	1.4	0.3	\$81,916		-	-\$157,		3S SS	+
Sluart 30(51) 7.3 1.8 7.1 2.2 0.7 0.4 \$74,404 10053 0.053 \$60.73 0.053 \$60.73 0.053 \$60.73 0.053 \$60.73 0.053 \$60.73 0.053 \$60.73 0.053 \$73,40168 0 \$	193		Prospect	25,463		0.5	3.7	0.8	1.5	0.3	\$80,126		_		42	3ST	_
Prospect 29039 87 225 97 28 03 573.248 LOSS 3 545.414 0 573.248 LOSS 3 545.414 0 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 <th0< th=""> 0 0 <</th0<>	11	Lemay	Stuart	30,613		1.8	7.1	2.2	-0.7	0.4	\$74,404		-+		33	4SG	+
Ind Horsetoch 2839 38 09 62 11 21 02 563.97 LOSS 1 537.556 Horsetoch 1 1 1 1 2 39 01 563.97 LOSS 1 537.556 Horsetoch 1 1 1 1 1 1 0 1 557.556 1 2 563.97 LOSS 1 553.753 557.553 1 2 1 1 0 0 0 356.41 1 2 0 3 561.91 0 0 3 561.91 0 0 3 561.91 0 0 3 561.91 0 0 3 561.91 0 3 561.91 0 3 561.91 0 3 561.91 0 3 561.91 0 3 561.91 0 3 2 561.91 0 3 2 661.91 0 2 2 2 2 2 2 <th< td=""><td>1535</td><td></td><td>Prospect</td><td>29,039</td><td></td><td>2.5</td><td>9.7</td><td>2.8</td><td>0.7</td><td>0.3</td><td>\$73,248</td><td></td><td>-</td><td>\$149</td><td>58</td><td>4SG</td><td>+</td></th<>	1535		Prospect	29,039		2.5	9.7	2.8	0.7	0.3	\$73,248		-	\$149	58	4SG	+
Inc Nine 1111 15 016 55 07 39 01 565065 LOSS 3 S05 Lunded Project Nason/Palmer 41645 46 14 54 17 06 03 56196 LOSS 3 LOSS 3 S05 3 S65 451 S67 46 Prodect S77 40 Nonmain 16,571 22 12 04 23 610 5 05 563 41 LOSS 3 S65 454 S67 424 S77 40 S77 40 S76 54 24 S76 55 25 S64 74 S76 55 S64 24 S76 56 S76 56 S76 56 S77 50 S76 56	6664	1 Mcclelland	Horsetooth	28,839		0.0	6.2	1.1	2.1	0.2	\$68,397	LOSS	_	-\$37		380	40
Mason/Palmer 41,645 64 14 54 17 06 03 561,916 LOSS 3 -545,142 St Mountain 16,251 32 10 41 51 23 563,93 LOSS 3 545,142 rigge Prospect 16,261 32 12 07 05 04 05 54,143 Pum 36,144 18 0.6 27 0.8 07 02 550,739 LOSS 3 541,443 Riverside 37,663 135 40 16.4 4.1 2.9 0.1 541,508 LOSS 3 541,443 Inlow 36,144 13 0.6 0.7 0.2 560,739 LOSS 3 561,226 1 Inlow 17,548 2.3 1.2 3.1 1.4 4.1 2.9 0.1 54,508 564,224 2.0 Inlow 37,663 1.2 3.1 1.4 0.6 3.4,466 3.6,4,23 3.6,4,23 </td <td>6417</td> <td>7 Timberline</td> <td>Vine</td> <td>14,151</td> <td></td> <td>0.6</td> <td>5.5</td> <td>0.7</td> <td>3.9</td> <td>0.1</td> <td>\$65,985</td> <td></td> <td>-</td> <td></td> <td></td> <td>4ST</td> <td>+</td>	6417	7 Timberline	Vine	14,151		0.6	5.5	0.7	3.9	0.1	\$65,985		-			4ST	+
St Mountain 16.251 3.2 1.0 4.4 1.3 0.9 0.3 560.431 LOSS 3 573.060 rige Prospect 21.232 1.2 0.4 2.0 0.7 0.5 56.19 LOSS 3 LOSS 3 573.060 rink Fisch 36.164 1.8 0.6 2.7 0.8 0.7 0.553 LOSS 3 524.641 - <td< td=""><td>7290</td><td></td><td>Mason/Palmer</td><td>41,645</td><td></td><td>1.4</td><td>5.4</td><td>1.7</td><td>0.6</td><td>0.3</td><td>\$61,916</td><td></td><td>-</td><td>-\$45</td><td>42</td><td>4ST</td><td>+</td></td<>	7290		Mason/Palmer	41,645		1.4	5.4	1.7	0.6	0.3	\$61,916		-	-\$45	42	4ST	+
idge Prospect 21,222 1.2 0.4 2.0 0.7 0.5 0.3 581431 LOSS 3 2.24.641 Piname 0 0 0.1 0.5 0.3 581431 LOSS 3 2.54.641 Plane 36,164 0.6 0.2 13 0.5 0.4 0.2 550.731 LOSS 3 554.641 Riverside 37,653 13.2 3.9 12.5 4.0 16.4 4.1 2.9 0.1 541,665 10.53 554.244 Inity 17,548 2.9 1.2 3.7 1.4 0.6 0.3 544.665 10.53 554.226 1 <td>116</td> <td></td> <td>Mountain</td> <td>16,251</td> <td></td> <td>1.0</td> <td>4.4</td> <td>1.3</td> <td>0.0</td> <td>0.3</td> <td>\$60,431</td> <td></td> <td>-</td> <td></td> <td>60</td> <td>4SG</td> <td></td>	116		Mountain	16,251		1.0	4.4	1.3	0.0	0.3	\$60,431		-		60	4SG	
Indice 16 601 0.6 0.2 1.3 0.5 0.4 0.2 552.372 LOSS 4 550 552 552.372 LOSS 4 550	225		Prospect	21,232		0.4	2.0	0.7	0.5	0.3	\$58,193		_	\$24,6	41	3ST	+
Immony 36,164 18 0.6 2.7 0.8 0.7 0.2 \$50,739 LOSS 3 \$41,484 St Harmony Rd 38,748 13.5 4 4 0 16.4 4 1 2.9 0.1 \$47,506 LOSS 3 LOSS 3 \$54,224 Immony	1024		Drake	16,601		0.2	1.3	0.5	0.4	0.2	\$52,372		_		\$0	3ST	-
St Harmony Rd 38.748 13.5 4.10 16.4 4.11 2.9 0.11 547.508 LOSS 3 554.224 Riverside 37.653 13.2 3.9 12.5 4.2 -1.0 0.3 544.685 > LOSS 3 554.224 Riverside 37.653 13.2 3.9 12.5 4.2 -1.0 0.3 544.685 > LOSS 3 550.169 >	5329		Plum	36,164		0.6	2.7	0.8	0.7	0.2	\$50,739		LOSS		84	3ST	+
Inverside 3/633 12/3 3/3 12/3 4/3 12/3 5/3	110		Harmony Rd	38,748		4.0	16.4	4.1	2.9	0.1	\$47,508		LOSS I		24	4SG	+
Initity 17/54B 2 9 1/2 3 / 1 0.5 0.2 544.312 LOSS 3 LOSS 3 S0 tituty Morelooth 25/263 1.4 0.5 1.1 0.8 -0.6 0.3 \$43.32 LOSS 3 LOSS 3 -554.205 <	69	Lemay	KIVEISIDE	37,663		3.9	CZL	4.2	0.1-	0.3	\$44,685		+	\$201,1	201	42	+
Indirection Z3,200 1.4 0.3 1.1 0.0 -0.0 -0.0 0.3 343,302 LC05.5 -504,200 Annualized Average Daily Traffic LC05.5 -504,200 Annualized Average Daily Traffic LC05.5 -504,200 Annualized Average Daily Traffic LC05.5	0000	Automotion More	I rilby	11,548		1.2	3./	1.4	0.0	2.0	544,312		-	0.100	50 5	4S1	
n priority locations for review AADT: Annualized Average Daily Traffic Shading AADT: Annualized Average Daily Traffic reflects PDC: Property Damage Only FI: Fatal or Injury LOSS 4 LOSS 4 LOSS 4 LOSS 4 LOSS Level of Safety	2000	Automation way	HOISELOOLI	207'07		C.D	-	0.0	9.0-	0.3	\$43,382		LU55	_	2	ŝ	8
PUC: Property Damage Only FI: Fatal on Injury LOSS. Level of Saries of Safety	Leg(10	end:) high priority locatio	ons for review		_	AADT: Annu	Jalized Ave	∍rage Daily	Traffic			Shading		Range of -\$50 Red shading n	0k to +\$50k unshaded notes increasing crash trend		
	Ac	dditional 15 locations	s with potential for crash	h reduction		FI: Fatal or	erty Dama Iniurv	ge Only				LOSS 4		Green shading	g identifies impoving safety trend		
	R	ecently Improved - safe	ety being monitored			LOSS: Lev	el of Servic	se of Safety									

Top 50 Intersections by Excess Crash Cost

🖈 d ā 🖡 👝

-

Table 11. Top 50 Intersections by Excess Crash Cost

æ 🚓

PATTERN RECOGNITION

Table 12 identifies intersections where a pattern of a particular crash type is identifiable. The evaluation is a statistical analysis developed by the Colorado Department of Transportation and compares the prevalence of a particular crash type at an intersection against the typical expected proportion of that crash type at the intersection. The table indicates the control type, the location, and the number of that type of crash in three years (2019 - 2021).

Only intersections with at least three crashes in three years (average one per year) are included (except for the bicycle and pedestrian crash categories - those locations with a pattern of these crashes and two crashes or more in three years are included). Judgment is needed with this analysis as a higher-than-normal proportion of one type of crash may be caused by a lower-than-normal proportion of another type of crash. Thus, some locations that are listed, especially those with fewer crashes, may not be of concern.

Some intersections may be listed in more than one category. For instance, the intersection of College and Cherry is listed in both the Serious Injury and Pedestrian categories. The intersection of Mason and Horsetooth is listed under right angle crashes and red light running crashes. The causes may or may not be related.

This more detailed information about the types and patterns of crashes should be combined with other elements of analysis to gain a complete picture and greater understanding of the safety performance of an intersection to identify subsequent mitigation measures.

Control	North - South Street	East - West Street	# crashes in 3 years	Control	North - South Street	East - West Street	# crashes in 3 years
pproach T	urn			Right Angle			
4 Signal	College	Troutman	28	4 Signal	Mason	Horsetooth	13
4 Signal	Timberline	Drake	19	4 Stop	Redwood	Conifer	11
4 Signal	Shields	Horsetooth	19	4 Signal	Remington	Prospect	9
4 Signal	Shields	Prospect	17	4 Stop	Mason	Magnolia	9
4 Signal	Lemay	Riverside	15	4 Signal	Taft Hill	Prospect	9
4 Signal	Taft Hill	Drake	15	4 Signal	Shields	Vine	8
4 Signal	Shields	Drake	15	4 Stop	Linden	Vine	8
4 Signal	Lemay	Drake	15	4 Signal	College	Columbia	8
4 Signal	College	Boardwalk	12	4 Stop	Worthington	Centre	7
4 Stop	College	Mason/Palmer	11	4 Stop	Meldrum	Laporte	7
4 Stop	College	Lake	9	4 Signal	Taft Hill	Horsetooth	7
3 Signal	Lemay	Horsetooth (West)	9	4 Signal	Research/Meadow	/lark Drake	6
4 Signal	Lemay	Horsetooth (West)	9	4 Signal	JFK	Boardwalk	6
4 Signal	JFK	Horsetooth	8	4 Signal	Timberline	Timberwood	6
4 Stop	College	Thunderbird	7				
4 Signal	Riverside	Mountain	7	Bicycle			
4 Stop	Shields	Richmond	6	4 Signal	Timberline	Caribou	3
3 Signal	Lemay	Swallow	6	3 Signal	Shields	Lake	3
				4 Signal	Centre	Prospect	3
Pedestrian				4 Signal	Remington	Pitkin	2
4 Signal	Mason	Mulberry	3	4 Signal	Matthews	Mountain	2
4 Signal	College	Stuart	3	4 Signal	Loomis	Mulberry	2
4 Signal	College	Cherry	3	3 Stop	Shields	University	2
4 Signal	Lemay	Doctors	2	4 Signal	Whitcomb	Prospect	2
4 Signal	College	Spring Park	2				
4 Signal	Remington	Mulberry	2				

Table 12. Intersections with Statistical Pattern of Particular Crash Types (continued on next page)

Table 12 Continued. Intersections with Statistical Patterns of Particular Crash Types

ROUNDABOUT SAFETY REVIEW

d 10

Fort Collins has installed several roundabouts in recent years. Roundabouts are often lauded for their roadway safety benefits due to slow speeds, and assumed reduced approach turn and right angle crashes. Reviewing crash data at the roundabouts in Fort Collins could help verify whether these claims are accurate in Fort Collins and could help direct roundabout policy in the future.

Four roundabout intersections in Fort Collins were reviewed as part of the intersection evaluation process described earlier in this report utilizing a crash prediction model developed for the National Transportation Research Board using crash data from roundabouts throughout the United States. *Table 13* shows the results for those four roundabout intersections. As shown in the table all four of the roundabouts reviewed had more crashes than expected (positive excess crash costs).

It's important to clarify that the expectation for roundabouts is that they will have less crashes than other types of intersections (STOP signs or traffic signals). Thus, the four roundabouts with an excess crash cost are higher than typical <u>when compared to other roundabouts</u>. While the excess crash cost may indicate an opportunity for improvement, it should not be misconstrued that the roundabouts are less safe than other types of intersections with lower crash costs because the basis for those costs is different.

A & 5

To compare safety at the roundabouts relative to other types of intersections the crash prediction models for signalized or unsignalized intersections can be used to estimate the number of crashes under other types of control.

Facility ID	North - South Street	East - West Street	Total ADT	Predicted Crashes/Year	Predicted FI Crashes/Year	Expected Crashes/Year	Expected FI Crashes/Year	Excess PDO		Excess Expected Crash Value (\$)
6473	Ziegler	Horsetooth	25367	7.4	1.4	12.7	1.6	5.2	0.2	\$89,771
559	Shields	Vine	13027	2.0	0.4	4.3	0.5	2.1	0.1	\$51,440
11282	Ziegler	Kechter	14804	2.3	0.4	3.1	0.6	0.7	0.1	\$34,489
100	Remington	Laurel	7673	1.4	0.2	1.1	0.3	-0.4	0.1	\$11,477

Table 13. Roundabout Intersection Comparison by Excess Crash Cost

ADT: Average Daily Traffic PDO: Property Damage Only FI: Fatal or Injury

Table 14 shows the predicted number of crashes and injury crashes at the four roundabout intersections if they were converted to traffic signals or, in the case of Remington/Laurel, STOP sign control.

Roundabouts

Have fewer injury crashes and less overall crash costs compared to signalized intersections with similar volumes.

The analysis shows that for the three intersections that could potentially be converted to traffic signals it would be predicted that they would have more crash costs with signal control than they currently do as

roundabouts. This is due to the higher number of injury crashes that would be expected with signal control. Note that Remington and Laurel is not outperforming STOP control. Crashes would be expected to be about the same there either way.

The intersection of Ziegler/Horsetooth is congested and near capacity. While there have been some discussions about converting the intersection to a signalized intersection, in light of this analysis, other steps to improve roundabout operation should be considered first to maintain the reduced risk of serious injury crashes incumbent with roundabout control.

					Predicted	Predicted FI	
			Expected	Expected FI	Crashes/Year	Crashes/Year	Expected
	North - South	East - West	Crashes/Year	Crashes/Year	w/Signal or	w/Signal or	Additional Crash
Facility ID	Street	Street	w/RBT	w/RBT	STOP	STOP	Cost w/change
6473	Ziegler	Horsetooth	12.7	1.6	7.1	2.1	\$26,457
559	Shields	Vine	4.3	0.5	2.2	0.8	\$26,007
11282	Ziegler	Kechter	3.1	0.6	2.4	0.9	\$59,259
100	Remington	Laurel	1.1	0.3	1.4	0.3	-\$1,113

Table 14. Roundabout Intersection Crash Comparison with Change in Traffic Control

RBT: Roundabout

FI: Fatal or Injury

Section 5 IMPROVING ROADWAY SAFETY

Successful improvement of roadway safety requires collaborative efforts from numerous departments within the City, the community, and individuals. In order to systematically reduce the number and severity of crashes, there must be a commitment and focus to address specific safety concerns that are identified through data. Roadway safety is complex, and both big and small initiatives are important.

The data and recommendations in this report serve as an initial Vision Zero Action Plan. Additional efforts in coming months and years will result in ongoing refinements of the plan. It's important for these documents to acknowledge the complexity related to safety: some of the elements are policy related; some strategies are site specific and/or are identified to mitigate particular trends; and others (especially education-related efforts) are applicable across the City and address more behavioral issues.

ELEMENTS OF A VISION ZERO ACTION PLAN

Listed below are elements of a Vision Zero Action Plan, with each category being a vital component to improved safety.

Systems-Based Approach

Historically, roadway safety was often a reactive, spot review after a particular concerning event or pattern. It is now understood that there is more success when a proactive, comprehensive approach is used - one that is continuous and utilizes foundational elements of safety from a broad range of measures. Many resources such as Federal Highway Administration's Local Road Safety Process, the Highway Safety Manual, and the Federal Safe Streets For All legislation recognize that an ongoing, proactive systems-based program is best, generally reflected in the categories shown in *Figure 51*.

Incorporating Safety into all City Efforts

Roadway safety involves multiple City department and requires collaborative partnerships. An intentional focus on safety throughout all aspects of projects from transportation planning, to adopted plans, project design, construction, operations, maintenance, enforcement incident management and more is critical. This may require a paradigm shift to add proactive elements to safety work in addition to reactive work.

Figure 51. Systems-Based Transportation Safety Approach

Robust Annual Review, Evaluation, and Understanding of Safety Data

This Roadway Safety Report is the compilation of safety data and should be used as the foundation to identify strategies and actionable items to address existing safety concerns. While there are numerous important transportation projects and efforts underway, the focus for Vision Zero efforts should be on those that 'move the needle' on crash numbers and/or severity.

Apply All the Elements of Safety Toolbox

Application of all elements in the 'safety toolbox' reflects a holistic systems based approach to roadway safety. The toolbox incorporates the five "Es" of safety: Engineering, Education/Encouragement, Enforcement, and Evaluation.

Engineering and Technology

Engineering improvements can include low cost improvements such as the installation of flashing yellow arrows, or leading pedestrian intervals (LPIs) at intersections. Engineering improvements also include significant efforts such as capital projects.

Technology is also a component and includes vehicle safety features, improved signal systems, connected technology and more.

Education / Encouragement

Education is an incredibly important component to a safer transportation system. This includes a broad range of efforts from staff in several departments, and the data in this report can be used to inform specific education campaigns.

City efforts undertaken in the past include the Bicycle and Pedestrian Safety Town, the bicycle friendly driver program, Safe Routes to School programs, and tours and presentations to interested groups about safety.

Enforcement

Police Services is the lead entity for enforcement and utilizes crash data to identify specific types or locations of crashes to target for enhanced presence and/or enforcement.

Other enforcement related efforts include:

- DUI campaigns and sobriety checkpoints are an important element.
- In the fall when school starts, a Bike Safety Week provides targeted education and enforcement by both Police Officers and Bicycle Ambassadors.

Police Services partnered with others to create a Bicycle Traffic Citation Course for individuals who have received citations related to cycling. This alternative sentencing option teaches cycling laws and offers tips for safe cycling.

Fort Collins Police Services also has Community Impact Days that focus on traffic enforcement and reduce dangerous driving behaviors. Police Services works with Traffic Operations to identify locations for targeted enforcement based on crash data.

Evaluation

Finally, a key for the roadway safety program is to continue ongoing monitoring of the overall transportation system, trends, patterns as well as specific locations. Efforts to ensure data quality and completeness, robust analysis, and systematic use of the information in all aspects of roadway safety strategies should continue. The result of evaluation helps to determine the effect of the various safety projects and identify the types of projects that are most beneficial.

Annual Focus Areas

There are typically a wide range of strategies needed to improve transportation safety. While multiple efforts are often needed, identifying an annual 'focus area' can provide an opportunity to delve deeper into the causes and potential mitigation for certain types of crashes.

Collaborate on Best Practices

Vision Zero as a concept has gained significant traction in the public consciousness, and across the nation hundreds of Vizion Zero Action Plans are being developed. The City can learn from others, as well as share experiences related to successful efforts, and lessons learned.

It is especially important to understand the various components of safety and differentiate efforts that 'move the needle' on crashes from other also important transportation improvements that may be focused on perceived safety/comfort, accessibility, or advocacy for a particular mode.

TRACKING AND MEASURING SAFETY **IMPROVEMENTS**

A key component to a safety toolbox is the ongoing monitoring and continuous safety evaluation of the City's transportation system. In addition to annual data gathering and review shown earlier in this report, monitoring specific efforts/initiatives for their effectiveness and impact on safety can inform future actions, and projects. Fort Collins has a long history of implementing safety improvement projects. Significant strides have been made towards a safer transportation system.

Recent Project Evaluations

The 2020 COVID lockdown makes traditional before/after crash studies more challenging. A proper evaluation must consider the lower volume and corresponding reduction in crashes in 2020. To account for this, actual crashes at a location can be compared to the predicted number of crashes using a crash prediction model that accounts for actual traffic volumes in both the before and after period. Excess crashes in each period can then be compared and the results can be expressed in terms of change in crash cost. Table 15 shows the net change in crash costs when comparing the period 2016 - 2018 to 2019 - 2021 at locations where safety improvement projects were completed.

			Excess PDO	Excess FI						2016 - 2018 vs.
	North - South	East - West	Crashes	Crashes		Excess PDO	Excess FI	∆ Expected PDO	∆ Expected FI	2019 - 2021
Facility ID	Street	Street	Before	Before	Project Completed	Crashes After	Crashes After	Crashes/Year	Crashes/Year	Δ Crash Cost
16	College	Horsetooth	10.4	6.1	Capital Project 2018	-2.0	0.2	-12.4	-5.9	-\$1,266,187
108	Shields	Drake	4.5	0.8	Capital Project 2017	-0.4	-1.3	-4.9	-2.0	-\$445,783
23	College	Monroe	9.5	1.1	Capital Project 2018	1.8	-0.1	-7.7	-1.2	-\$312,142
239	Snow Mesa	Harmony	-2.1	1.1	Protected Lefts 2018	-1.0	-0.4	1.1	-1.5	-\$281,795
109	Shields	Elizabeth	6.2	-0.3	Capital Project 2017	0.4	-0.7	-5.7	-0.5	-\$156,400
7461	Shields	Davidson	-0.5	0.4	Capital Project 2017	-0.9	-0.3	-0.4	-0.7	-\$134,103
15993	Linden	Vine	2.7	0.7	All-way STOP 2017	0.8	0.1	-1.8	-0.5	-\$121,496
180	City Park	Mulberry	1.6	0.1	Road Diet 2018	0.9	-0.3	-0.7	-0.4	-\$83,916

Table 15. Monitoring Safety from Recent Improvements

PDO: Property Damage Only FI: Fatal or Injury

IDENTIFIED PRIORITIES AND ACTION PLAN

This report has detailed the data-driven evaluation of transportation safety in Fort Collins. It provides the basis to determine areas of opportunity for safety improvements. Based on that information, *Table 16* lists priorities for safety based action items. It provides a 'roadmap' of which topics and locations are recommended for further evaluation, and the identification of actionable strategies to reduce the number and severity of crashes.

The actions reflect the safe systems approach to improving roadway safety. Some elements are engineering based, while others are focused on citywide review of specific crash types. There are also items related to processes and policies, and an understanding that education and engagement is a critical element of improving a community's transportation safety.

As the information is put to use, additional analysis may be needed and helpful, and the priority list can be refined.

Item Priority	Concern / Topic	Action / Locations	Considerations
1. Engineering High Priority	Top 10 intersections with highest excess crash costs	Comprehensive, detailed safety audits 1. College / Trilby 2. Shields / Horsetooth 3. College / Drake 4. Boardwalk / Harmony 5. Shields / Prospect 6. College / Mulberry 7. Lemay / Vine (already improved) 8. Shields / Plum 9. Lemay / Drake 10. Timberline / Carpenter	Full safety audit including data collection, crash review, operations evaluation, field visit etc. Consider all available strategies including low cost improvement, signal timing, geometrics, capital project potential, safety grant opportunities etc.
2. Process/ Policy Priority	Incorporate safety elements into ongoing capital projects	Review and provide input to all capital projects with a lens of safety for all modes. Complete safety audit for all capital projects. Include safety as an element as projects are prioritized in Capital Improvement Program.	Consider how to elevate safety considerations in project decisions Utilize Interactive Highway Safety Design Model (IHSDM) to compare alternatives.
3. Medium Priority	Additional 15 intersection reviews	Per Table 11 complete a higher level review of crash data at intersections ranked between 11 – 25 and those shaded lighter blue	Look for crash patterns, low cost improvements (i.e., striping changes)
4. Operational Priority	Approach Turn Crashes	Some locations are included in the top 10 safety audit locations, or projects in process. Additional locations: 1. College / Troutman 2. Timberline / Drake 3. Shields / Prospect 4. Lemay / Riverside 5. Shields / Drake 6. Taft Hill / Drake	Review each location individually and/or consider a citywide review of permissive / protected left turn phasing. Prioritize projects requiring longer mast arms for four-section heads Review locations for the potential of 4 second yellows.
5. <mark>High</mark> Priority	Red Light Running /Right Angle Crashes	Review locations with red light running patterns and right angle crash patterns 1. Mason / Horsetooth 2. Remington / Prospect 3. College / Columbia JFK / Boardwalk	Review visibility of signal heads, signal timing progression / offsets regarding arrival of platoon, etc.

Table 16. List of Priorities for Safety Based Action Items

	Item Priority	Concern / Topic	Action / Locations	Considerations
	6. Medium Priority	Non-Intersection Crashes	 Review locations with clusters of crashes related to driveways / access locations. 1. College N of Vine 2. Magnolia E of Lemay 3. Lemay at Prospect 4. Elizabeth W of Taft Hill 5. Elizabeth at City Park 6. College N of Rutgers 7. Willox E of College 	Changes in striping, access control and work with businesses on queuing impacts on arterials.
nendations	7. Ongoing	Bicycle Crashes	Review all locations with multiple bicycle crashes (see Tables 6 and 12). Focus on intersection improvements to reduce conflicts / bicycle crashes.	 Conflicts with turning vehicles (both approach turns and right hook).
Active Mode Recommendations	8. Ongoing	Pedestrian Crashes – especially Fatalities	Review all locations with multiple pedestrian crashes (see Tables 9 and 12) for trends or countermeasures Consider how environmental factors and behavior contributes to midblock and nighttime crashes – look for opportunities to reduce these occurrences.	 Fatalities: 6 of 7 in past three years on arterials. 6 of 7 were non-intersection related 4 of 7 occurred during dark
	9. Education Priority	Education	Continue and enhance education and communication campaign to elevate transportation safety as community priority. Consider creation of a core team of safety champions. Partner with Poudre School District on some type of transportation safety training / outreach to all students and parents every year.	Messaging could include education for young drivers, discouraging bicyclists traveling against traffic, pedestrian safety, etc. Consider a traffic safety week in mid-August to coincide with CSU and PSD efforts.
	10. Ongoing	Enforcement	Continue to partner with Police Services on w locations for enforcement, additional red light	
	11. Medium Priority	Policies / Programs / Standards	Explore how a transportation safety standard would provide strength to addressing safety c Continue work with FCMoves on how to integ improvement strategies during planning proje- comfort/mobility and reduce number/severity of	oncerns in development review. rate operations, safety data and cts. Support efforts to improve
	12. <mark>Ongoing</mark> Priority	Data	Continue to work on data quality control and improving crash data especially with implementation of new statewide crash form DR3447. (See discussion in Section 6)	Coordination with Police Services on data entry training. Create arterial location designation in database.

Table 16 Continued. List of Priorities for Safety Based Action Items

Section 6 **NEXT STEPS**

Safety must be the city's top priority. Improving the safety of all roadway users requires everyone – the City, community and individuals – to share the effort and responsibility of improving and ultimately ensuring safety.

The analysis in this **Roadway Safety Report** as well as the extensive data that supports the review is a critical step in the complex and multi-faceted challenge of roadway safety. The document provides a holistic and comprehensive look at roadway safety in Fort Collins.

WORKING ON PRIORITIES

The compilation of identified priorities and the action plan items in the previous section (*Table 16*) provides a starting point for safety efforts in the coming year(s). Utilizing a systems-based approach ensures that the highest priorities are incorporated into daily work within the City. Next steps may include infrastructure review through safety audits, low cost improvements, signal timing refinements, and other elements in the education, and enforcement arenas.

IMPROVING THE DATA

The City has undertaken significant efforts in partnership between Traffic Operations and Police Services to improve the available data for this document. With appreciation to all those involved, the data accuracy and level of detail is improving.

With the state's implementation of the new crash reporting form (DR 3447), collaboration should continue to further understand the complexity of the new form, the most beneficial fields for safety analysis, and the process to get that information from the form into the analysis database. Specific areas of focus include:

- Ensuring location data through geocoding is accurate
- Consistent identification of whether crashes are intersection related or not
- Details regarding crashes involving vulnerable road users (such as pedestrian and bicyclist age)
- Crashes involving impairment
- Noting whether crashes occur on an arterial or not.

The ability to 'move the needle' on numbers and severity of crashes is dependent on the continued improvement of the quality of data and analysis to develop and implement effective strategies and countermeasures.

LOOKING TOWARDS THE FUTURE

In coming years, there are number of potential initiatives that can dramatically impact roadway safety.

Near-term changes include Collision Avoidance Systems that are becoming more standard on new vehicles. With almost half of all crashes being rear-end crashes, this has the potential of profound improvements. In the longer term, connected and autonomous vehicles have the potential to increase capacity and improve safety on the roadway system.

Within the analysis realm, the use of big data including video analytics of near crash events could be one way to pro-actively detect systematic safety concerns before crash patterns in crash reports identify the issue.

All these initiatives and others that are not yet even identified can support transportation safety.