

Chapter 2: Pollinator Gardening April 2024

An Introduction to Diversifying Urban Landscapes in Fort Collins

Acknowledgments

City of Fort Collins

Kate Rentschlar- Environmental Planner, Nature in the City
Kelly Smith- Senior Environmental Planner, Nature in the City
Kristy Bruce- Environmental Planner, Nature in the City
Scott Benton- Environmental Planner, Community Development \& Neighborhood Services
Leslie Spencer- Business Support II, Community Development \& Neighborhood Services
Bryan Fischer- Horticulture Technician Gardens on Spring Creek
Bernadette Kuhn- Senior Environmental Planner, Natural Areas
Crystal Strouse- Botanist, Natural Areas
Jennifer Torry- Senior Landscape Architect, Park Planning and Development
Emma Pett- Lead Water Conservation Technician, Utilities
Katie Collins- Water Conservation Specialist, Utilities

Chickadee Pine Designs

Desneige Sodano- Owner-Chickadee Pine Designs

 EMEMEMEMEMEMEMEME
 EMzMEMEMEMzMzMzM＝ $=118$
 EMEMEMEMEMEMEMEME
三MEMEMEMEMEMEMEME
 zMEMEMEMEMEMEMEMG $111=110=112=115=111=112=11$

Why Diversify Landscapes？

Diverse landscapes are beautiful and resilient．They contain a variety of native and adapted species that provide important habitat and resources for wildlife and pollinators．They are naturally adapted to the Front Range＇s semi－arid climate and native soils， which translates to lower water and chemical inputs，and a better ability to withstand short－and long－term changes in climate． They invoke a Colorado landscape aesthetic and establish a sense of place．Spending time in them benefits our physical and mental health．In short，moving towards diverse landscapes is more sustainable and brings nature into the city，which provides considerable ecological，economic，and social benefits．

The use of plants that are native to Colorado is highly encouraged when you diversify your landscape. Native plants have evolved here and are adapted to our climate and soil types. In addition, our local pollinators and wildlife co-evolved with these plants and many are dependent on specific native plant species for survival. As such, native plants form the base of local food webs. However, it is also important to recognize that native plants may not be appropriate in all situations, e.g., your aesthetic
 preferences, the level of activity on site, HOA policies.

Navigating the Guide

This guide is broken into chapters (see Table of Contents), which primarily revolve around different landscape options (e.g., Pollinator Gardening, Lw Water Lawn). The guide also includes chapters on other relevant landscaping topics (e.g., Soil Amendment, Weed Management). It is highly recommended to start with Chapter One - Site Characteristics and Planning.

Within each chapter, you will find information on the following (when applicable):

- Overview of topic
- Physical requirements
- Design examples or case studies
- Irrigation
- Maintenance
- Plant list
- Additional resources
- Installation tips
- Fun fact!

Converting your yard from turf to a xeriscape and or native garden is On TREND!

Over 390 residential projects in Fort Collins were granted Xeriscape Incentive Program (XIP) funding for a total of 462,100 square feet of converted landscape. That is 10 acres or approximately 7.5 football fields!

XERISCAPE INCENTIVE PROGRAM

Definitions

Adapted Species	Non-native species that grow well in a given habitat with human adjusted changes to the environment such as water or nutrients.
Aggregate	A material or structure formed from a loosely compacted mass of larger soil or rocks.
Aspect	The direction the land is facing. eg: north, south, northeast etc.
Cues to Care	(CTC) are landscape elements that are immediately recognizable as designed, and that signal continuing human presence to care for a landscape.
Complementary Colors	Colors opposite from each other on the color wheel. They have a strong contrast that increases how noticeable they are when placed close together.
Exotic Plants	Plants not native to the area where they are planted.
Forb	A herbaceous flowering plant that is not a grass.
Hydrozone	Areas where plants with similar water needs are grouped together - very low water, low water, medium water, and high water plants should be grouped by water needs.
Impervious Surface	A hard surface that does not let water soak into the ground, causing puddling or resulting in runoff.
Larval Host Plants	Plants required for the growth and development of insect larvae such as caterpillars. Butterflies are often particular about the species where they host their eggs to support the larva.
Microclimate	Small areas that have a different climate than the overall climate of a site. They can be created by structures, topography, water, boulders, and impervious surfaces.
Native Plant	A plant species that grew in an area before colonization of that area.
Organic Matter	Any of the carbon-based compounds that exist in nature or material that comes from living things. This can include carbon-rich soils, manure, mulch, or compost.
Perennial	Any plant that persists for several years, usually with new herbaceous growth from a part that survives from growing season to growing season.
Permaculture	Permacultre stands for permanent agriculture. It uses whole systems thinking to create spaces for planting that encourages naturally flourishing ecosystems.
Pruning	Selective removal of certain parts of a plant such as branches, buds, or roots.
Resilient	Ability to bounce back after experiencing a setback.
Slope	A surface of which one end is at a higher level than the other; a rising for falling surface.
Soil Amendment	Anything that is added to a soil to improve water retention, nutrients, or drainage.
Xeriscape	Principles of sustainable design including use of low water plants, and sustainable gardening techniques.

\&-$3-\cos _{-\infty}-8-\infty$ E- $E=-2$ en
 3 \&-
 $3-8$ - -8 - $-\infty=0$ á
0
0

 $\operatorname{cosec} \cos ^{2}$

Chapter 2 Pollinator Gardening

About pollinator gardening

Pollinators make the world go around! Over 70 percent of the world's flowering plants require a pollinator to produce fruit or seeds. This amazing service allows plants that we depend on, for food and the economy, to thrive and makes our world a more vibrant place. You can help pollinators flourish by creating a pollinator garden.

Most outdoor spaces can be transformed into a pollinator garden. Here are key elements that should be considered when designing and installing your pollinator garden:

- Use as many native plants as possible. Many local pollinators need specific native plants that they evolved with to survive. However, some adapted plants can also provide resources to pollinators.
- Use a variety of plants so there is always something in bloom from early spring through fall.
- Choose plants with a variety of flower colors and shapes that will attract different pollinators. (Learn more ${ }^{1}$)
- Make sure to include larval host plants in your landscape or bunchgrass for overwintering sites. Here is a list ${ }^{2}$ of critical host plant species for Larimer County pollinators.
1.https://www.fws.gov/pollinators/pdfs/PollinatorBookletFinalrevWeb.pdf

2. https://www.fcgov.com/natureinthecity/files/nativeplant-handout-finaloutline4.24.pdf? 1619107014

- Plant the same species of plants in clumps or swaths. This allows pollinators to work more efficiently.
- Be wary of cultivars or hybrid plants. They are often bred for showy flowers or leaf colors that pollinators can't access or don't like.
- Do not use weed barrier fabric! This fabric is detrimental to the health of your soil and prevents ground nesting bees from being able to find a home.
- Leave bare soil spots, free from mulch, for ground nesting bees.
- Keep dead trees or limbs in your garden for bees that nest in wood.
- Insects need to drink water too! Leave out a shallow bowl of water or bird bath, and place rocks in it so they have a safe place to land.
- Don't use pesticides, insecticides or herbicides. These can directly or indirectly kill pollinators.

Factors to Consider When Selecting Plant Species

Pollinator gardens can be installed in a wide range of conditions since many plants can be used to support pollinators. In general, the following physical factors should be considered:

SUN REQUIREMENTS: Full sun or part sun (Have full shade? (Check out Chapter 3 - Dry Shade)

SOILS: Variable - can be rocky, loam, clay, etc. it just needs to be able to support plants.
DRAINAGE: Variable - however, many native and low water plants appreciate well-drained sites.

ASPECT: Variable - east, south, west are ideal since they get more sun.
WATER: Very low to moderate.
MICROCLIMATES: Take advantage of warm microclimates around your home (e.g., south side of a building, next to pavement or on a south facing slope) to expand the palette of successful pollinator plants in your garden. Warm microclimates can be excellent sites for plants in the genera Penstemon, Opuntia,
Echinocereus, and Eriogonum, for starters.
Not sure what these different physical requirements are?
Check out Chapter 1 - Site Characteristics.

Design Examples

Small Project Design

This pollinator garden will fit snuggly into a corner. It measures $15^{\prime} \times 15^{\prime}$ and 22^{\prime} diagonally. The tall purple (when in bloom) leadplant shrub anchors the garden. The design has repeating colors and varying textures through a wide selection of native perennial forbs.

Numbers on design correspond to plants listed on the right.

Designed by Deryn Davidson, CSU Extension

Native plants in a newly planted garden with pea gravel and cobble mulch. Photo provided by Deryn Davidson.

Shrub

Dwarf Wild Indigo Amorpha nana

Perennials

Chocolate Flower Berlandiera lyrata

Common Yarrow
Achillea
millefolium

Grass

Sideoats Gramma Grass
Bouteloua curtipendula

Prairie Sage
Artemisia
Iudoviciana

Blue Mist
Penstemon
Penstemon virens

Purple Prairie Clover
Dalea purpurea

Blue Flax
Linum lewisii

Groundcovers

Pussytoes
Antennaria spp.

Evening Primrose
Oenothera caespitosa

Spreading Daisy
Erigeron
divergens

Oakridge Village VII HOA added a pollinator garden to their green space in 2020. The space is along a main walking path and encourages its residents to sit and admire a Colorado landscape. The garden has a large diversity of perennials, grasses and shrubs. It also highlights several Garden in a Box designs. ${ }^{3}$ The garden uses pea gravel as mulch and has large boulders.

Oakridge Village Garden image:

3. https://resourcecentral.org/gardens/

Medium Project Design - Oakridge Village Plant List

Tree

Rocky Mountain
Juniper
Juniperus
scopularum
Shrubs

Woods Rose
Rosa woodsii

Shrubs

fruticosa

Rubber Rabbit Brush
Chysothamnus nauseosus var. nauseosus

Purple

Poppymallow,
Winecups
Callirhoe
involucrata

Red Rocks
Penstemon
Penstemon x
mexicalli 'Red

Green Ephedra
Ephedra viridis

Grasses

Blonde Ambition Blue Grama Bouteloua gracilis 'Blonde Ambition'

Slowmound Mugo Pine
Pinus mugo
'Slowmound'

Undaunted Ruby Muhly
Muhlenbergia reverchonii 'PUND01S'

Rocky Mountain Bee Plant
Cleome serrulata

May Night Salvia Salvia nemorosa 'May Night'

Large Landscape-Level Project Design - Bloom

The Bloom Pollinator Plan is an innovative community planning and site design tool meant to establish pollinator habitat at Hartford Homes' 229-acre mixed-use neighborhood in Fort Collins. It supports the City's broader goals of creating pollinator habitat, integrating natural systems, improving aesthetics, implementing sustainable landscapes and stewarding natural resources.

Norris Design collaborated with City staff to develop pollinator habitat guidelines, from planning and design through maintenance best practices. The Master Plan recommends plant species that provide both year-round and seasonal habitat for pollinator species. The Plan also identifies locations for linear pollinator corridors and site-specific design nodes for pollinators of varied species and flight distances.

All landscape throughout the development is irrigated via nonpotable water stored in irrigation ponds. Pond edges create additional opportunities for riparian pollinator species within the interior of the community

Designed by Norris Design

Large Landscape-Level Project Design - Bloom Plant List

Spring Blooming Plants for Pollinators

Blue Mist Bluebeard
Caryopteris x
clandonensis 'Blue
Mist

Carol Mackie
Daphne
Daphne x
burkwoodii

Dwarf Pinon Pine Pinus edulis

Butterfly Weed Asclepias tuberosa

Prairie Smoke Geum triforum

Purple Poppymallow, Winecups Callirhoe involucrata

Sonoran Sunset Hyssop
Agastache cana 'Sinning?

Sulphur-flower Erigonum umbellatum

Summer Blooming Plants for Pollinators

Showy Milkweed Asclepias speciosa

Creeping Oregon Grape Holly Berberis repens

Blanket Flower Gaillardia aristata

Blue Flax
Linum lewisii

Indian Grass
Sorghastrum
nutans

Fall Blooming Plants for Pollinators

Engelmann's
Daisy
Engelmannia
peristenia

Giant Goldenrod
Solidago gigantea

Stonecrop
Sedum spectabile

Purple
Poppymallow,
Winecups
Callirhoe
involucrata

Showy Milkweed Asclepias
speciosa

Installation Tips

Getting your plants in the ground is not quite as simple as digging a hole and dropping them in. Here are a few tips that will help your plants have a smooth transition into your landscape.

- Before planting, make sure you get a soil test done. You may need to amend your soil before planting (see chapter 1 page 2) so that it can support your plants.
- Plant in the morning or evening; avoid planting during the hottest part of the day as this will stress your plants. Similarly, try to avoid planting during peak heat months, such as July and August.
- Water your plants before you put them in the ground and again after you put them in. Transplanting is stressful and they will do better if they are well hydrated.
- The width and depth of the hole you're planting will vary depending on what you are planting. In general, you should dig a hole twice the width and the same depth of the pot your plant is in. The exception to this is trees, which should be $2-3 x$ the width of the root ball and 1-3 inches shorter than the root ball.

Pollinator gardens are typically dominated by plants adapted to Colorado's semi-arid climate and require less water than conventional landscaping. However, all plants need water to get established for the first growing season.

To avoid over-watering your garden, it is best to create and stick to an irrigation plan. Overwatering can kill low water plants by rotting their roots. A good irrigation plan outlines how much to water and provides a timeline to help you cut back on watering at the appropriate time. Once plants are established, watering should be infrequent and deep. The simplest way to water is using a hose, but you can also install drip irrigation to save time and reduce the amount of evaporation.

Even the best laid plans cannot address all contingencies, like excessive drought or heavy/ prolonged rains. Therefore, the focus should be on results - if your plants are healthy above and below ground then your watering is likely appropriate. Frequent monitoring is key. Soil moisture monitoring devices are available to provide feedback but getting your fingers in the soil is an effective and easy way to monitor moisture levels. It is important to check the soil moisture between watering and each time you water, to ensure you are not over or underwatering.

Is the ground moist 6 inches below the surface or only at the surface? It is best to water infrequently and deeply, soaking the soil 6 inches down. Deep, less frequent watering will encourage plants to root deeply and become more drought tolerant.

Example Irrigation Plan for Establishment of a Perennial Bed for Pollinators*		
	FREQUENCY	DURATION
Spring and Fall Planting	Once a day	Once every 2-3 days
	Once every 7-14 days	First 3 weeks
	Once a day	As needed through growing season
	Once every 2-3 days	Through peak heat
	Once every week	Until the fall
Plants should receive roughly the same volume of water as the size of the pot the plant came in, per		
watering event.		
*Adjust as necessary given precipitation and condition of plants		

Native-dominant pollinator gardens typically require less maintenance once established but some kind of maintenance is inevitable. Proper planning and installation can minimize required maintenance and increase the chances of long-term success. Refer to Chapter 1 for more on garden planning fundamentals.

Weed Management

The use of pesticides in a pollinator garden is strongly discouraged since the chemicals can be taken up by the plant and then transferred to non-target pollinators via pollen and nectar. If pesticides are used be sure to follow all application instructions to the T - the label is the law! The Larimer County Weed District ${ }^{4}$ can provide advice on weed identification, management, and pesticides.

Mulching

Mulching is a critical practice for gardening to decrease soil temperature, suppress weeds, and conserve soil moisture. When adding mulch to new or existing plants, leave a buffer between the base of plants and mulch. This practice keeps the stems of plants dry and prevents rot. Learn more about the different types of mulch in the Site Characteristics and Planning Chapter.

Weed barrier is not recommended, as it has a negative effect on soil quality and wildlife habitat. Weed barrier will also begin to degrade over time allowing weeds to root through it and it becomes difficult to remove and unsightly.

Keep in mind that many native pollinators are groundnesting species and require some patches of bare and/or minimally covered soil. You can help them out by not mulching (or only mulching to a depth of 1 inch) in a 6-12 inch circle around the trunk or stems of some plants.

Other

Don't clean up all of your garden in the Fall or Spring. The dead plant material is used by many pollinators to overwinter or nest in. Removing this plant material may expose the pollinators to harsh spring conditions that they will not be able to survive. Wait until May to start cleaning out your garden.

4. (https://www.larimer.org/naturalresources/weeds)

Appropriate Plant List

When selecting plants, make sure they meet your physical requirements and are appropriate for your space. CSU Extension recommends the following plant list, with plants separated into times of the season they bloom. This list is to help you get started - some of these plants may not be appropriate for your space and there are many more plants that are great for pollinators.

For more plant options (or information on the plants in the list), use the Fort Collins Plant Database and select filters appropriate for your project.

Additional Resources

Bringing Nature Home - Tallamy (2014), Timber Press

CSU Extension - Creating Pollinator Habitat: https://extension.colostate.edu/topic-areas/insects/ creating-pollinator-habitat-5-616/

CSU Extension - Attracting Native Bees to Your Landscape: https://extension.colostate. edu/topic-areas/insects/attracting-native-bees-landscape-5-615/

Get Involved - Join the Native Bee Watch: https:// arapahoe.extension.colostate.edu/nbw/

The Bumble Bees of Colorado: https://www. colorado.edu/cumuseum/sites/default/files/attached-files/thebumblebeesofcolorado-2017.pdf

Selecting Plants for Pollinators: A Regional Guide for Farmers, Land Managers, and Gardeners in the Southern Rocky Mountain Steppe - Pollinator Partnership: pdf

US Forest Service - Pollinators: https://www.fs.fed. us/wildflowers/pollinators/

US Forest Service - Pollinator-Friendly Best Management Practices for Federal Lands

Xerces Society for Invertebrate Conservation https://www.xerces.org/

Did you know that Colorado is a bee hot spot?

That's right, we have more than 946 species of bees that call Colorado home!

And almost half (437 species) are found in Larimer County.

Most people are familiar with the European honeybee (a non-native species) and bumble bees (Colorado has 24 species!). However, there are many more to explore. You can learn more about Colorado's bees through the Native Bee Watch or Xerces Society.

\# of Species of Bees

Orr et al. 2020. Global Patterns and Drivers of Bee Distribution, Current Biology, https://doi.org/10.1016/ j.cub.2020.10.053

How to use the Plant Lists

The plant lists are divided by plant types shown in the grey bar. They include Trees, Shrubs, Perennials, Groundcovers, and | Grasses.

Scientific Name	Common Name	
Amelanchier alnifolia var. alnifolia	Saskatoon Serviceberry	

Scientific names include the genus, species, and sometimes subspecies or variety of the plant. These are listed to help identify exact species. Some common names can be used for multiple species with different characteristics such as bloom color, size, or habitat value. If you would like to learn more about a plant listed in a chapter, find the common or scientific name in the plant list to learn more about how it grows. For more information on plants that grow in Northern Colorado check out the digital plant database here: www.fcgov.com/vegetation/

The Bloom Time information is split into 4 columns, each showing the main color of the plant as it blooms throughout the year. Column A is early spring, exact timing depends on temperatures and precipitation of that year, but usually around April and May. Column B is the main plant color in early summer, late May and June. Column C represents the plant color in the heat of summer, July and August. Column D indicates the color in fall, typically September and October.

Nativity describes the closest location to Fort Collins where the plant grows natively.

FC= Fort Collins-(these plants grow native in Fort Collins).

CO= Colorado (these plants grow native somewhere in Colorado, but not Fort Collins).

US= United States (these plants grow native somewhere in the United States, but not Colorado).

Not Native= These plants are not native in the United States.

Very Low- indicates a plant that requires 3 gallons of water per square foot per season in addition to precipitation.

Low- indicates a plant that requires 8 gallons of water per square foot per season in addition to precipitation.

Moderate- indicates a plant that requires 14 gallons of water per square foot per season in addition to precipitation.

High- indicates a plant that requires 18 gallons per square foot per season in addition to precipitation.

Programs hosted by the City of Fort Collins include Nature in the City (NIC) and the Xeriscape Incentive Program (XIP). Nature in the City focuses on plants native to Colorado and Fort Collins where XIP focuses on water savings. Plants listed with both XIP and NIC are supported by both programs.
$\mathrm{s}=$ seeds
frt $=$ fruit
hp = host plant
wl= wildlife
Habitat value comes in many forms. Below is a key to describe what habitat values the plant provides. Sometimes a specific animal or insect type is described in the list such as "bee"or "bird".
$\mathrm{np}=$ nectar/pollen
bf = butterfly
hb = hummingbird

dIX＇JIN	ұәиб๐щ ŋכəsu｜	чłow＇रıI ／du＇fq ‘əəə／du	S	pew－Kı0	$\begin{gathered} \varepsilon-1 \\ x, G-g^{\prime} \downarrow \end{gathered}$	Sก	ролиәроэ	－dds oбep！！${ }^{\text {as }}$		
dIX＇JIN	S！！os Kpues KıO	Iq ‘əəq／du	S	M07	，$)^{\circ} \times 1 . 乙$	Sn	әsjeョ Kuen			
OIN	pues ‘sイејว paqums！	Iq ‘əəq／du	S	pəw	，レx， $01-9 \cdot \downarrow$	Sn	јәмоций иошшoว	snnuиe sпчұиe！｜əн		
OIN	I！os Kpues ‘łs！ow s．əəృəдd	tq ‘əəq／du	Sd／S	4б！H	．t×，${ }^{\text {c }}$	Sก	（ןenuue） s！sdoәлоว sule｜d	е！иоұวи！S！sdoaıoう		
OIN		q4／u ؛q ‘əəq／du	S	M07	． $1 \times$ ， E	Sn	（ןenuue）łueld әәд $\mathfrak{7}$ К Куэоу	еделиәл әшоәว		
dIX＇JIN	！！os Kıp ‘łчбпоィр 	／u ！fq ‘əəq／du	S	pəw-אג]	，Ex，	Sn	doss $/ \mathrm{H}$ ฉuе！ฺ әnןя	unıno！uәод әчэеұsеб \forall		
						Sadol				
dlX＇JIN	S！！os łəM SəłeıəᅵОค	｜M ؛sp．！̣q 	Sd／S	$\begin{gathered} \text { цб!н } \\ \text {-рәw } \end{gathered}$	．8×，8	Sn	Kuəqdsey әəpןnog	snso！u！！əp snqny		
dIX	॥eł ‘sə！！ıəq पs！n！g	ıq ‘əəq／du	Sd／S	M07	．tx，	Sn	ysnıqı！！qqey	snsoəsneu е！әшеэ！ョ		
									så	ndHs
sur．bodd	selon	әnje＾ł！！qe\％	2．nsodx］	spəәN əセル	$\begin{array}{r} \text { पІР! M } \\ \times \text { UD!ə } \end{array}$	K！n！̣en	әure uoumoう	әueN ग！！！ue！os		$\begin{gathered} \hline \text { әu! } \perp 1 \\ \text { woolg } \end{gathered}$

