A SPECIAL PLACE !

Outline

- -Boundary
- -Rocks
- -Historical geology
- -Processes creating local landforms
 - -Mountain building
 - -Erosion
 - -Rivers

We are in a special place!

This is a unique location where across very short distances there is evidence of: -vast amounts of geologic time -multiple geologic processes

How does this happen?

We are at a significant physical

BOUNDARY

—landform types—rock types—geological processes

North America

Griffiths & Rubright, Colorado

Main Landform Boundary

Mountains

Plains

Colorado Physiographic Provinces

LANDFORMS

Copyright 1994 University of Oklahoma Press

More detail....

Mountains

Piedmont

Rock Type Boundaries

Plains rocks (sedimentary) meet Mountain rocks (igneous, metamorphic)

Other boundaries

Biological — grasslands meet forests Historical/Cultural — mining meets farming — urban meets rural

Natural Areas and boundaries

Mountain side—Gateway Straddle—Bobcat, Coyote Ridge, Plains—most

ROCKS

Mountain rocksPlains rocks

Mountain Rock Types

Igneous — molten source

Metamorphic — any rock changed by force

Igneous Rocks

Extrusive (volcanos)

- lava, ash etc.
- surface
- small crystals

Intrusive (batholiths)

- granite etc.
- underground
- large crystals

Igneous Rocks

Pahoehoe

Volcanic ash/pumice

Extrusive Igneous Rocks

Lava

S. Table Mt.

Intrusive Igneous

West of us are huge areas of intrusive igneous (granite)

1.4 billion years old

Granite

cooled slowly underground fairly uniform large crystals

Metamorphic Rocks

Metamorphic rocks = any original transformed by heat, pressure, hot fluids Typical metamorphic = gneiss (granite transformed)

Metamorphic Rocks

McKnight & Hess, Physical Geography

Metamorphic Rocks

closest mountain rocks west of Fort Collins = mostly metamorphic

approx. 1.7 billion years old

Gneiss at Gateway

-minerals in bands

-bands often wavy

-veins may cut across

Identifying metamorphic Metamorphic Rocks

Can be difficult because:

— often same composition as igneous_they are just altered versions of original rock

Ulainte

Gneiss

Plains Rock Type

Sedimentary

Sedimentary Rocks

Material:

—worn off somewhere else,
—carried by water and wind,
—settles out in layers (mostly in water)
—later cemented together
Oldest on bottom

Sedimentation

1) Sediments erode from continent

Arbogast, Physical Geography

Sedimentary Rocks Sandstones – sand, in layers sorted by grain size **Conglomerates** – sand and pebbles mix of several sizes Shales – layers of mud, layers often thin very fine particles

Identifying Sedimentary rocks

—Layers parallel to each other
—Usually break along these
"bedding planes" → (flagstones)
—Often fine grained

Sandstone

Conglomerate

Shale

GEOLOGIC HISTORY

Ancestral Rockies

- Rose above sea ca. 300 million ybp about where the current mountains are
- One of two large islands — Frontrangia — Uncompahgria

Ancestral Rockies

Fig. 55. Coarse, arkosic seatments spread from the two islands to become the Cutler (west), Maroon (center), Fountain (east), and Sangre de Cristo formations (south).

Foutz, Geology of Colorado p. 25

FOUNTAIN FORMATION

280 million ago from Ancestral Rockies

—thick — av. 800 ft -conglomerate -varying hardness -lying on metamorphic rocks more than 1 billion years older —purplish, pinkish color

Ancestral Rockies Mountains

Fountain Conglomerate

Boulder Flatirons

Red Rocks

Fountain Formation Bobcat Ridge

LYONS FORMATION -climate very dry (Pangaea) -sand dunes —fine grained sandstone, —well cemented, resistant -economically important

Lyons Sandstone

260 million ybp

Johnson & Raynolds, Ancient Denvers

Lyons Sandstone

LYKINS FORMATION

- —low hills and muddy, slimy, hot salt flats
- —limestone and mudstone
 —easily eroded (now soil covered)
 —first reptiles
 —followed by Permian extinction

Lykins Formation

250 million ybp

Johnson & Raynolds, Ancient Denvers

MORRISON FORMATION

age of dinosaurs
area very flat (mountains gone)
sediments ca. 400 ft. thick

Morrison Formation

150 million ybp

Johnson & Raynolds, Ancient Denvers

DAKOTA GROUP

—sandy coast of shallow sea
—sediments from mts. in W. Utah beach sands, thin muds
—plant fossils & dinosaur prints
—very resistant to erosion

Dakota Group

ca 100 million yrs bp

Johnson & Raynolds, Ancient Denvers

Dakota near Red Rocks

Dakota group

Horsetooth Reservoir and Dixon Canyon Dam Geology Low Water Summer 2003

Morrison Formation

Jelm Formation Sundance (Entrada) Formation

Dakota - Lytle Formation

staffweb.psdschools.org The Horsetooth Quadrangle Virtua Geologic Field Trip

Dakota - South Platte Formation

Dakota (South Platte Formation)

Ripples-South Platte (Dakota)

Dakota (Lytle Formation) Devil's Backbone

NIOBRARA FORMATION 85 million years ago -marine origin —shale and chalk -abundant small fossils & oil -endemic plants (Bell's twinpod)

Niobrara

PIERRE FORMATION

-Colorado mostly under water —muddy sediments more than 1 mile thick the rock beneath Fort Collins —rarely exposed (soil covered)

Pierre

70 million years bp

Pierre Shale

Processes creating local landforms

Mountain buildingSelective erosionRivers

Mountain building

"Laramide Orogeny"

Laramide Orogeny

70 to 40 million ago current Rockies rose in series of pulses (3rd or 4th set of mountains here)

.... probably still rising

Plate push from west

Lithospheric Cartoon of the Laramide Orogeny

Fig. 1.5. Model for rotation of the Colorado Plateau by northward-increasing slip on a master detachment underlying the plateau (from Erslev, 1993).

Laramide Orogeny

During and after mountain building: 1. two major periods of volcanic activity 2. magmatic intrusions and metamorphism 3. faulting and folding

Colorado Mineral Belt

Griffiths & Rubright, Colorado
Vein

Mountain erosion

As mountains rose, they were being worn away \rightarrow source of huge volume of sediments = sedimentary rocks of Plains

-10,000—15,000 ft. deep

Quaternary Sediments 21st century Front Range Today **Castle Rock Conglomerate** 16,000 years ago Ice Age Summer Castle Rock Rhyolite 34 million years ago Castle Rock Floods 37 million years ago The Rockies Explode D2-Dawson Arkose Paleosol 55 million years ago Red Dirt World 64 million years ago The First Rainforest D1-Dawson Arkose, 65 million years ago After Armageddon **Denver** Formation. Arapahoe Conglomerate 66 million years ago Finally, the Rockies Laramie Formation Fox Hills Sandstone Pierre Shale 70 million years ago Submarine Colorado There are nearly 14,000 feet of layers beneath the Denver Basin. The Wells Fargo Center in Denver (locally called the "Cash Register" building) is about 700 feet tall. That means that the layered rocks beneath the Denver Basin are equal to a stack of 20 Cash Register buildings! Dakota Sandstone 100 million years ago Colorado's East Coast 150 million years ago Long Neck Meadow Morrison Formation 191919 Lykins Formation 250 million years ago Slimy Shoreline Lyons Sandstone 280 million years ago Sand Planet Fountain Formation 300 million years ago Ancestral Rockies Precambrian igneous and metamorphic rocks **Ancient Denvers**

Relative Sediment Depths

$(Total = ca \ 14,000 \ ft)$

Ohnson & Raynolds, Ancient Denvers

Folding and Faulting

Forces that lifted Rockies caused surrounding sediments to bend and break

Folding

anticlines and synclines

compression

Anticline — up

Syncline — down

Types of Folds

Mountain Uplift

(broadly anticlinal)

Anticlinal uplift accompanied by synclinal downwarp east of mountains

Synclinal downwarp Denver Basin

Denver Basin

Grube, Dakota Group Stratigraphy,

Faulting breaking & moving

Faults

Tension
Normal fault
Compression
Reverse fault

Faults produced by:

3. Shear

Strike-slip fault

Fault types

Faults

Local

Fig. 4.1. Geologic map of the northeastern margin of the Front Range showing locations of areas 1, 2, and 3, and paleomagnetic study sites.

SELECTIVE EROSION

Demolition

Demolition can be concurrent with landform creation

Demolition — two components:

- 1. weathering
- 2. erosion

Weathering

breaks up rocks —> moveable —mechanical —chemical

Frost V Wedging

Cracks in Granite

Highly Fractured Granite

Weathering of granite

Gruss

Root wedging

Unloading/Exfoliation

Chemical Weathering

Breaks down minerals within the rock

Spheroidal Weathering

Erosion

Agents of erosion:

- 1. gravity—> mass wasting
- 2. flowing water
- 3. ice = glaciers
- 4. wind

Hogbacks

Selective erosion has left "hogbacks" (steeply tilted sedimentary layers) resistant beds → hogback ridges less resistant → valleys between ridges

These are uncommon features.

Horsetooth Reservoir Lyons Formation

Hogback - Coyote Ridge

hogbacks

Exposing time

By turning beds up, the surface across them exposes hundreds of millions of years of time in a very short distance

70 million ybp 100 million ybp

200 million ybp 1,700 million ypb

Reservoir Ridge Natural Area

Adapted fromBraddock et. Al Geologic Map of the Horsetooth Quadrangle

Adapted from Braddock et. al Geologic Map of the Horsetooth Quadrangle

Coyote Ridge

Bobcat Ridge

Bobcat Ridge

RIVERS

—Flowing water = greatest landscape remodeler

—Streams are highly tuned and balanced systems

—It is all about energy

Flowing water's passion:

—plane landscape off to sea level —carry everything off to sea

Erosion starts with raindrops

Raindrop impact

Work of streams

- -Ability to remove material depends on:
 - —Volume (how much water)
- -These vary constantly
- -Stream constantly adjusts its load to match its energy

Streams both:

- —Remove material = Erosion
- —Deposit material = Deposition

These occur:

In different parts of streamSame part at different times

Streams work by:

- 1. Power of current push, roll
- 2. Abrasion rub smooth
- 3. Corrosion chemically dissolve

Streams move things

Power of the current

Lawn Lake Flood

Streambed Abrasion

125

McKnight & Hess, *Physical Geography*

Valley Shape reveals stream energy

down-cutting
(high energy)

depositing (low energy)

Valley Shape

Eroding stream = cutting down —steep gradient —"straight" course —steep valley sides

Steep Gradient/High Energy

Deposition

—lower gradient (less energy)
<u>cutting sideways</u> and <u>depositing</u>
—meandering stream course
—low sides and broad valley

Valley Widening

Cache La Poudre River Corridor Natural Areas (north)

Poudre Pointbar

Poudre sandbar

Change in Stream Regime

Streams can go from net eroding to net depositing or vice versa in hours and over millenia

Causes of change

-Season

—Short term precipitation events
—Climate changes precipitation amounts

—Sea levels fall or rise

-Land moves up or down

Stream Rejuvenation

(long term change)

Long pauses in mountain uplift changed streams from downcutting to widening

Renewed uplift changed streams to downcutting again

Stream Rejuvenation

-our streams have been rejuvenated ie. increased their downcutting several times -rejuvenation often leaves -terraces -erosional surfaces

Stream Rejuvenation

(a) Before uplift

(b) Uplift

Stream Terraces

(c) After uplift

143 //cKnight & Hess, *Physical Geograph*y

Stream Terraces Caucasus Mountains

144 Gregory, The Lie of the Land

Erosional Surfaces

Rejuvenated Big Thompson

Flooding

Floods = natural stream behavior area flooded = floodplain Flooding: —flushes deposits downstream -brings new soil -may renew some vegetation -damages man-made things

Floodplains and floods

Talk about them in intervals eg. "100 yr floodplain" (made by "100 yr flood") does **NOT** mean will flood every 100 yrs, but the probability is of a flood of that size once every 100 ears

Power of water! ower

Flood-damaged U.S. Highway 34 and debris are pictured next to the Big Thompson River near the Narrows during a media tour Tuesday in the canyon. RICH ABRAHAMSON/THE COLORADOAN

THE ROCK SOLID END

Contact information

Lynn Rubright 970-225-1730 lynnrubright@comcast.net