

Historic Preservation Services Community Development & Neighborhood Services 281 North College Avenue P.O. Box 580 Fort Collins, CO 80522.0580

970.224.6078 preservation@fcgov.com fcgov.com/historicpreservation

REPORT OF ALTERATIONS TO DESIGNATED RESOURCE Site Number/Address: 718 Remington St. Laurel School National Register Historic District ISSUED: April 24, 2024

Jordan Wiswell and Meghan King 718 Remington St. Fort Collins, CO 80524

Dear Property Owners:

This report is to inform you of the results of this office's review of proposed alterations to the Hahn House at 718 Remington St., pursuant to Fort Collins Municipal Code, Chapter 14, <u>Article IV</u>. A copy of this report may be forwarded to the Colorado Office of Archaeology and Historic Preservation as well.

The alterations reviewed include:

• Detached pergola with solar panel system at property rear

Our staff review of the proposed work finds the alterations meet the SOI Standards for Rehabilitation and the project appears to be routine in nature with minimal effects to the historic resource, meeting the requirements of Article IV cited above.

Notice of the approved application has been provided to building and zoning staff to facilitate the processing of any permits that are needed for the work.

Please note that work beyond that indicated in your permit application/correspondence requires additional approval.

If you have any questions regarding this report, or if I may be of any assistance, please do not hesitate to contact me. I can be reached at <u>yjones@fcgov.com</u> or at 970-224-6045.

Sincerely,

Yani Jones Historic Preservation Planner

Solar PV **BUILDING PERMIT APPLICATION:** All information on the application must be filled out (as applicable). Scope of work (check one) New system installation \Box Alterations to an existing system \Box Reinstallation of an existing system \Box (new equipment or expansion) (same equipment and same location) **USE / TYPE OF BUILDING** (check the correct uses below): Residential Commercial Single family detached Duplex/Two-Family Single Family Attached (Townhome) Multi-Family (Apartment/Condo) Bar 🗌 Church Hotel/Motel Garage 🗌 Bank 🗍 Medical Office Retail Other :_____ UNIT#:_____ JOB SITE ADDRESS: PROPERTY OWNER INFO: (All owner information is required – NOT optional) Last Name______ First Name______ Middle______ Street Address_____City____State___Zip____ Email Phone # **CONTRACTOR INFO:** Company Name _____LIC #_____CERT # _____ License Holder Name **CONSTRUCTON INFO** (check any that apply): Thermal Hydronic System Battery Storage PV (photovoltaic) \Box Roof 🗆 Mounting: Ground UTILITES INFO: Electric Service Upgrade? Yes D No D Existing Amps New Amps Electric Meter Relocation? Yes D No D Yes No D Meter change out? Yes D No D Panel change out? VALUE OF CONSTRUCTION (materials and labor): \$ **DESCRIPTION OF WORK** (Include KWh and number of solar panels): JOBSITE SUPERVISOR CONTACT INFO: Name_____Phone _____Phone ____Phone ___Phone ____Phone ____Phone ___Phone ___Phone ____Phone ____Phone __ SUBCONTRACTOR INFO: Plumbing Electrical Applicant: I hereby acknowledge that I have read this application and state that the above information is correct and agree to comply with all requirements contained herein and City of Fort Collins ordinances and state laws regulating building construction. Applicant Signature _____ Type or Print Name \square

Phone #

Email

THIS APPLICATION EXPIRES 180 DAYS FROM APPLICATION DATE

Building Services | 281 N. College Ave Fort Collins, CO 80524 | Phone: 970.416.2740 | email: buildingservices@fcgov.com | www.fcgov.com/building

Building Services PO Box 580 281 N College Ave Fort Collins, CO 80524 970-416-2740 phone 970-224-6134 fax

HOMEOWNER AFFIDAVIT

as owner of record of the property located at:

Fort Collins, Colorado, hereby declare and attest to

the following: (please check only the one that applies):

OPTION 1: CONSTRUCTION OF NEW HOME

□ I am acting on my behalf for the purpose of obtaining a building permit and personally constructing my home. The home to be constructed is on the above property and will be my primary residence. I have not personally constructed any other new homes in the Fort Collins city limits within the past **24-month** period.

OPTION 2: PERMITTED WORK ON DETACHED SINGLE FAMILY HOME

I am acting on my behalf for the purpose of obtaining a building permit and personally constructing an alteration or addition to my house, acting as my own general contractor. The house to be altered is on the above property and **is** my personal **primary** residence.

OPTION 3: PERMITED WORK ON ATTACHED SINGLE FAMILY DWELLING UNIT.

I am acting on my behalf for the purpose of obtaining a building permit and personally constructing a nonstructural alteration to my attached single family dwelling unit. The house to be altered is my personal <u>primary</u> residence. I am aware that I cannot complete or supervise any structural, electrical, plumbing or mechanical work and *must hire contractors/subcontractors* who are currently licensed and insured with the City of FortCollins*.

I am personally performing all of the work or hiring City of Fort Collins licensed trades people, or will be continuously supervising unpaid volunteers (see Option 3 for attached dwellings). The work is directly related to the construction of the above referenced home.

I understand that any person(s) or agent(s) contracted to perform **structural** wood-framing, plumbing, HVAC, electrical or roofing work, MUST BE licensed contractors in accordance with the regulation of the City of Fort Collins.

I understand that failure to comply with any of the above conditions may result in revocation of any permits associated with the above Permit Application number, forfeiture of any fees that have been collected, a Stop Work Order and potentially a court summons.

JULIANA GARCIA Notary Public Sign in the presence of Notary Public State of Colorado Notary ID # 20224043827 My Commission Expires 11-16-2026 Owner The foregoing Affidavit was acknowledged before me on this day of OVO (month, year) by Witness my hand and official seal My commission expires: Notary Public

*nonstructural construction, alterations, and/or repairs of less than \$2000 are exempt from this requirement.

Revised 12/14/2022

Building Services 281 N. College Ave. P.O. Box 580 Fort Collins, CO 80524 Voice: 970.416.2740 FAX: 970.224.6134

HOMEOWNER AFFIDAVIT

Homeowners of a **DETACHED** single-family home may personally perform and /or act as their own general contractor for any work on their **PRIMARY** residence. Permit requirements are applicable. If said homeowner hires and pays anyone for work that requires a City licensed contractor, the City licensed contractor needs to be listed on the building permit application, and will need to be current on City license and insurance requirements before the building permit can be issued.

Homeowners of an ATTACHED single-family home (townhouse, condominium or duplex), may perform LIMITED "MINOR ALTERATIONS AND REPAIRS" by City Code as follows:

"A building owner and any unpaid volunteers or paid workers employed by said owner who perform only minor alterations and repairs to such building, provided that all such work is under the continuous personal supervision of said owner, and further provided that no building owner, or unpaid volunteer or paid worker employed by said owner, may engage in the following types of work without obtaining the appropriate contractor license."

Furthermore, the work must be limited to minor alterations and repairs, which, DO NOT include:

- 1. Any alterations/installations involving, fire-resistive assemblies, alterations to primary and secondary framework; electrical, plumbing, or mechanical systems; and replacement of more than 100 sq. ft. of roofing; **OR**
- 1. Any nonstructural construction, alterations, or repairs when the total value of the work exceeds \$2000.

PAID WORKERS

Regardless of ownership status, <u>paid</u> non-owner worker(s) or contractors performing overall project supervision MUST BE A CITY LICENSED GENERAL CONTRACTOR. Any paid specialized trades that perform any one of the following: structural wood framing, roofing, electrical, plumbing, or HVAC, MUST BE SUB-CONTRACTORS licensed by the City.

APPLICATIONS & PENALTIES

A homeowner acting as their own "general contractor" for work on their own primary residence, must submit a notarized City Homeowner Affidavit form to Building Services before a building permit can be issued. Failure to comply with the above conditions can result in a "Stop Work" order on the project, permit revocation, forfeiture of fees, and a court summons.

EXEMPTIONS

(1) Any homeowner of an attached dwelling and any unpaid volunteers or paid workers employed by said owner who perform only minor alterations and repairs to such building, provided that all such work is under the continuous personal supervision of said owner, and further provided that <u>NO homeowner of an attached dwelling</u>, or unpaid volunteer or paid worker employed by said owner, may engage in the following types of work without obtaining an

appropriately licensed City contractor:

- (a) Alterations to the primary or secondary structural frame work (except for the repair and replacement of existing window and doors, provided that such repair or replacement does not create larger openings or greater spans for such headers);
- (b) Alterations to fire-resistive assemblies as defined in the building code,
- (c) Alterations to or the installation of electrical, plumbing or mechanical systems, (except for electrical/plumbing fixture replacement in the same location as original).
- (d) Replacement/installation of more than a total of one (1) square (100 square feet) of roofing.
- (e) Nonstructural construction, alterations, or repairs to a building performed by the building owner, or by his or her unpaid volunteer or paid workers, when the total construction value of all work (including the related work done on the project by licensed specialized trade contractors) exceeds twoo thousand dollars (\$2000).

Revised 12/15/2022

	GEN
1	EQUIPMENT LIKELY ENERGIZED SHALL E SATISFY MIN. WORK
2	24/7 UNESCORTED P PROVIDED TO ALL C EQUIPMENT.
3	CONTRACTOR SHAL BY A NATIONALLY R FOR THE INTENDED
4	CONTRACTOR IS RE EQUIPMENT, CABLE RACEWAYS, AND OT A COMPLETE AND O
5	ALL EXPOSED PV RC THE ARRAY SHALL E A LISTED JUNCTION WITH NEC 690.31(A).
6	WHERE DC PV SOUF RUN INSIDE THE BUI IN METAL RACEWAY METAL ENCLOSURE INTO THE BUILDING DISCONNECTING ME
7	ALL EMT CONDUIT F

REMMINGTON ST

		P-9F5B1E
THE OF WORK THE INSTALLATION OF A GRID- PV MODULES WILL BE MOUNTED MOUNTING SYSTEM. THE MODULES DNNECTED WITH DC TO AC POWER NNECTED TO THE LOCAL UTILITY DDS CONSISTENT WITH THE RULES . UTILITY AND PERMITTING		
N PREPARED TO DESCRIBE THE PV SYSTEM WITH ENOUGH DETAIL TO ICE WITH APPLICABLE CODES AND MENT SHALL NOT BE RELIED UPON AS WING MANUFACTURER INSTALLATION EM SHALL COMPLY WITH ALL LATION INSTRUCTIONS, AS WELL AS NOTHING IN THIS DOCUMENT SHALL BE HAT OVERRIDES THEM. CONTRACTOR RIFICATION OF ALL DETAILS IN THIS	' SYSTEM	SIDENCE STON ST S, CO 80524
V SYSTEM	_ ∠	RE INC
NEW GRID-INTERACTIVE PHOTOVOLTAIC SYSTEM WITH NO ENERGY STORAGE	IED	YELL
5.81KW		SW 181 T C
7.60KW, 32.0A		21 × 13
5.358KW	U U	> 0
1 X TESLA 1538000-XX-Y (7.6 KW)		<u> </u>
14 X TRINA SOLAR TSM-415NE09RC.05		
(1) STRING OF 7 (MPPT #1) (1) STRING OF 7 (MPPT #2)		
INECTION DETAILS		
NEW LOAD-SIDE AC CONNECTION PER NEC 705.12(B)(2) AT MSP		
120/240V 1Ф		
MAIN SERVICE PANEL W/ TOP-FED 200A BUSBAR 200A MCB		
IGN PARAMETERS		
-23°C (-9°F)		
32°C (90°F)		
ASHRAE DATASET FORT COLLINS DOWNTOWN		
140 MPH, EXPOSURE CATEGORY B, RISK CATEGORY II		
35 PSF	PRC	JECT SUMMARY

PV-1

	P-9F5B1E
TO BE WORKED UPON WHILE BE INSTALLED IN LOCATIONS THAT (ING CLEARANCES PER NEC 110.26. KEYLESS ACCESS SHALL BE CITY OF FORT COLLINS - (CO)	
LL USE ONLY COMPONENTS LISTED RECOGNIZED TESTING LABORATORY 9 USE. ESPONSIBLE FOR FURNISHING ALL S, ADDITIONAL CONDUITS, THER ACCESSORIES NECESSARY FOR DPERATIONAL PV SYSTEM. OOFTOP CONDUCTORS NOT UNDER BE PROTECTED BY A RACEWAY WITH I BOX AT BOTH ENDS AND COMPLY RCE OR DC PV OUTPUT CIRCUITS ARE ILDING, THEY SHALL BE CONTAINED YS, TYPE MC METAL-CLAD CABLE, OR IS FROM THE POINT OF PENETRATION TO THE FIRST READILY ACCESSIBLE EANS, PER NEC 690.31(D). EITTINGS SHALL BE LISTED AS ITTINGS AND INSTALLED TO ENSURE A REC 358.42. DOF-MOUNTED PV ARRAY. 2/12 (9.5°) 4) TRINA SOLAR TSM-415NE09RC.05 (FRAME, CLEAR BACKSHEET), 180° D-XX-Y (7.6 KW) INVERTER (I1), INDOOR	GRID-TIED PV SYSTEM WISWELL RESIDENCE 718 REMINGTON ST FORT COLLINS, CO 80524
TYPE, LOCKABLE, READILY ELED PV SYSTEM DISCONNECT 10 FT OF UTILITY METER (SW1), PANEL (MSP), OUTDOOR R, OUTDOOR OX, OUTDOOR, OUTPUT CIRCUIT IALL BE RUN IN EMT CONDUIT OVER R THAN 3/4" ABOVE ROOF SURFACE	
	SITE PLAN
	PV-2

PM1-14						МС	DULES									
415W + PV MODULE	REF. QTY. MAKE AND MODEL					PTC	ISC	IMP	VOC	VMP	1	TEMP. COEFF.	OF VOC		FUS	E RATING
	PM1-14 14 TRINA SOLAR TSM-415NE09RC.05			415W	390W	10.50A	9.85A	50.1V	42.1V	-	-0.1242V/°C (-0.2	25%/°C)			20A	
$\int \int \frac{1}{2} \frac{2}{3}$												510.00				
			INVERTE	RS			- 0-0					DISCO	NNECIS			
	REF. QTY MAKE AND MODEL	AC GROUND	RATED	MAX OUTPUT	MAX INPUT				REF. Q	1Y.	MAKE AND MO		RATED	CURRENT	MAX RAI	ED VOLTAGE
7 IN 7 IN	TESLA 1538000-XX-Y (7.6	NOT SOLIDI		CONNENT	OUNTEIN	VOLIAG			5001	1 30	UARE D DZZZINRB	UR EQUIV.		00A	24	40VAC
ISTRING ISTRING	1 1 KW)	240V GROUNDED	7,600W	32.0A	68.0A	600V		98.0%								
											5400 7					
			OCPDS	<i></i>			1 74 05		DEC IO	T) /	PASS-I	HRU BOXE	S AND CC	MBINERS		
, , , , , , , , , , , , , , , , , , ,	REF. QIY.	KA	1ED CURRENT			MAX VU			REF. Q	ΙΥ. 1 ΤΟ/			RATE	20A	MAX RA 240\/A	
	CB1 1		40A 40A			2401	AC		301	1 117		12 01100113		JUA	240 17	(C7000VDC
			10/1			2.00										
	SYSTEM SUMMA	RY														
(1)		MPPT 1 MPPT 2	RAPID SHUTDOWN [DEVICES COMPLIA	NT WITH REQUIRE	EMENTS AS PE	R NEC 690.12(B)(2). PV CIRCU	JIT CONDU	CTORS LOCAT	ED OUTSIDE THE	ARRAY BOUND	ARY (DEFINE	D AS 3 FEET FF	ROM THE POI	INT OF
	MODULES IN SERIES	7 7 7	PENETRATION INTO		DRE THAN 3 FEET		RAY) SHALL BE	E LIMITED TO NO	OT MORE T	THAN 30V WITH	IIN 30 SECONDS C	OF RAPID SHUT	DOWN INITIAT	ION. CONDUC	TORS LOCAT	ED INSIDE
	ARRAY IMP	9.8A 9.8A	OF THE ARRAT BOD	NDART ONALL DE I						000						
$\begin{pmatrix} 2 \end{pmatrix}$	ARRAY MAX VOC	392.1V 392.1V 2	THE SYSTEM SHALL	BE INSTALLED WI	TH TESLA MCI-2 IN	NLINE PV HAZA	RD CONTROL	SYSTEM DEVIC	CES. WHEN	I INSTALLED V	ITH THESE DEVIC	ES, THE TESLA	INVERTER M	EETS REQUIRE	EMENTS FOR	PV HAZARD
	ARRAY ISC	10.5A 10.5A	CONTROL SYSTEM A	AS DEFINED IN NEU	, 690.12(B)(Z)											
	ARRAY STC POWER	5,810W 23	MATING CONNECTO	RS SHALL COMPLY	WITH NEC 690.3	3.										
	ARRAY PTC POWER	5,467W	DC PV CONDUCTOR	S ARE NOT SOLIDL	Y-GROUNDED. N	D DC PV COND	UCTOR SHALL	L BE WHITE- OF	R GRAY-CO	LORED						
		32A	ALL METAL ENCLOS	URES, RACEWAYS	, CABLES AND EX	POSED NONCI	JRRENT-CARF	RYING METAL P	ARTS OF E	QUIPMENT SH	ALL BE GROUNDE	D TO EARTH A	S REQUIRED E	3Y NEC 250.4(E) AND PART	III OF
		5 358W	ARTICLE 250 AND DO	C EQUIPMENT GRO	UNDING CONDUC	CTORS SHALL	BE SIZED ACC	ORDING TO NE	C 690.45. 1	HE GROUNDI	IG ELECTRODE SY	/STEM SHALL A	DHERE TO NE	EC 690.47(A) ÀI	ND NEC 250.1	169 AND
	DEIGHED ACT OWER COTT OF	0,00011	INSTALLED IN COMP	PLIANCE WITH NEC	250.64.											
	✓ MAX DC VOLTAGE OF ARRAY IS EXPECTED TO BE 392.1V AT -23°C ((-22.6°C - 25°C) X -0.124V/C + 50.1V) X 7 MODULES = 392.1V).															
	PV SYSTEM DISCONNECT SHALL BE A VISIBLE KNIFE-BLADE TYPE DISCONNECT THAT IS ACCESSIBLE AND LOCKABLE BY THE UTILITY IN ACCORDANCE WITH NEC 690.13(E). THE DISCONNECT SHALL BE															
	LOCATED WITHIN 10 FT OF UTILITY METER AND INSTALLED IN COMPLIANCE WITH NEC 705.20 AND GROUPED AS REQUIRED BY NEC 230.72.															
	N SYSTEM DISCONNECT MEETS NEC 690.12(C) REQUIREMENT FOR A RAPID SHUTDOWN INITIATION DEVICE															
	シ PV BACKFEED OCPDS SHALL HAVE AN AMPERE INTERRUPTING CAPACITY THAT COMPLIES WITH THE REQUIREMENTS OF NEC 110.9 AND NEC 240.86(B)															
F1-2 PV DISCONNECT																
VADA SQUARE D D222NRB	RE D D222NRB POINT-OF-CONNECTION IS ON LOAD SIDE OF SERVICE DISCONNECT, IN COMPLIANCE WITH NEC 705.12(B)(2). OUTPUT IS BACKFED THROUGH BREAKER IN MAIN PANEL. THE SUM OF 125% OF POWER SOURCE(S) OUTPUT CURRENT (32A X 1 25 = 40A) AND THE MAIN BREAKER (200A) DOES NOT EXCEED 120% OF BIJSBAR RATING (200A X 1 20 = 240A) 40A + 200A <= 240A															
(4) sw1	- SUURCE(S) UUTPUT GURRENT (32A X 1.25 = 40A) AND THE MAIN BREAKER (200A) DUES NOT EXCEED 120% OF BUSBAR RATING (200A X 1.20 = 240A). 40A + 200A <= 240A															
60A A		$\underline{\Lambda}$	THE PV BREAKER SH	HALL BE LOCATED	AT THE OPPOSIT	E END OF THE	BUSBAR FRO	M THE MAIN BR	REAKER. IT	SHALL NOT B	MARKED FOR "LI	NE" AND "LOAD)".			
				CONDUCTOR	AND COND	JIT SCHED	ULE W/EL	ECTRICAL (CALCUL	ATIONS						
			CURRENT-CARRYIN	IG					001	MAX			TERM.	AMP. @		
	ID TYP CONDUCTOR	CONDUIT / CABLE	CONDUCTORS IN	OCPD	EG	iC	FACTOR	FILL FACTOR		-NT CURRE	NT BASE AMP.		TEMP.	TERM.	LEN.	V.D.
			CONDUIT/CABLE.							(125))		RATING	RATING		
	1 2 10 AWG PV WIRE, CC	PPER FREE AIR	N/A	N/A	6 AWG BAR	E, COPPER	0.96 (33°C)	1.0	13.13	A 16.41	A 55A	53A	90 °C	40A	91.9FT	0.41%
(E) AC 200A 200A BUSBAR (TOP-FED)	2 1 10 AWG THWN-2, CO	PPER 0.75" DIA. EMT	4	N/A	10 AWG THWI	N-2, COPPER	0.96 (33°C)	0.8	13.13	A 16.41	A 40A	31A	75 °C	35A	16.8FT	0.07%
GEC 200A MAIN BREAKER	3 1 8 AWG THWN-2, CO	PPER 1.0" DIA. PVC-80	2	40A	10 AWG THWI	N-2, COPPER	0.96 (33°C)	1.0	32A	40A	55A	53A	60 °C	40A	17.5FT	0.36%
	4 1 8 AWG THWN-2, CO	PER 0.75" DIA. EMT	2	40A	10 AWG THW	N-2, COPPER	0.96 (33°C)	1.0	32A	40A	55A	53A	75 °C	50A	48IN	0.08%
TINE																
⊾J																

Ρ

GENERAL ELECTRICAL	1		P-9F5B1E
NOTES	$\left \right $		
ACCESS TO ALL PHOTOVOLTAIC			
¹ SYSTEM COMPONENTS LOCATED AT			
THE SERVICE ENTRANCE.			
CONDUCTORS EXPOSED TO			
SUNLIGHT SHALL BE LISTED AS			
ARTICLE 300.6 (C) (1) AND ARTICLE			
310.10 (D).			
CONDUCTORS EXPOSED TO WET	1		
3 LOCATIONS SHALL BE SUITABLE FOR			
USE IN WET LOCATIONS PER NEC			24
ARTICLE 310.10 (C).		N	10 12: 12:
	1	Ш	80 N N
		S.	
		С Х	C C C
¹ REQUIREMENTS OF NEC ARTICLES		>	<u>у</u> б <u>у</u>
250 & 690		ď	R Z Z
PV MODULES SHALL BE GROUNDED		\Box	
		쁜	E E C
2 AS ALLOWED BY LOCAL		L-	VISW 718 I RT C
JURISDICTION. ALL OTHER EXPOSED		SIC	
METAL PARTS SHALL BE GROUNDED		Ц С	≤ O
USING UL-LISTED LAY-IN LUGS.		•	LL_
INSTALLER SHALL CONFIRM THAT			
EVALUATED FOR COMPLIANCE WITH			
³ UL 2703 "GROUNDING AND BONDING"			
WHEN USED WITH PROPOSED PV			
MODULE.			
VERIELARI E GROUNDING			
4 ELECTRODE. IT IS THE			
CONTRACTOR'S RESPONSIBILITY TO			
INSTALL A SUPPLEMENTAL			
ELECTRODE CONDUCTOR (GEC)			
5 SHALL BE A MINIMUM SIZE #8AWG			
WHEN INSULATED, #6AWG IF BARE			
	$\left \right $		
CONDUCTORS SHALL BE SIZED			
ACCORDING TO NEC ARTICLE 690.45,		SIN	GLE-LINE DIAGRAM
6 AND BE A MINIMUM OF #10AWG			
WHEN NOT EXPOSED TO DAMAGE,			
AND #6AWG SHALL BE USED WHEN			
GROUNDING AND BONDING			
CONDUCTORS, IF INSULATED, SHALL			
7 BE COLOR CODED GREEN, OR			
MARKED GREEN IF #4AWG OR			
	L		
🖌 1 🔿 SINGLE-LINE DIAGRA	М		
PV-3 SCALE: NTS	-		D\/_?
\smile			

		P-9F5B1E
LING NUTES SIGNAGE REQUIRED BY 2023 NEC AND		
STALLED AS REQUIRED. S) AND MARKING SHALL COMPLY VHICH REQUIRES THAT DANGER, JTION SIGNS USED THE STANDARD HEADER TEXT, AND SAFETY ALERT		
ABEL. THE ANSI STANDARD NG THAT IS AT LEAST 50% TALLER XT, IN ACCORDANCE WITH NEC		
ING THE LOCATION OF THE SERVICE EANS AND THE PHOTOVOLTAIC CTING MEANS IF NOT IN THE SAME RDANCE WITH NEC 690.56.	3TEM	ENCE N ST) 80524
KING, "TURN RAPID SHUTDOWN F' POSITION TO SHUT DOWN PV CE SHOCK HAZARD IN THE ARRAY," WITHIN 3 FT OF SERVICE EANS. THE TITLE SHALL UTILIZE ERS WITH A MINIMUM HEIGHT OF 3/8". LEGIBLE AND CONTRAST THE	ED PV SYS	ELL RESIDE EMINGTON MLLINS, CC
RKING, "WARNING PHOTOVOLTAIC SHALL BE LOCATED AT EVERY 10 FT VAY AND WITHIN 1 FT OF EVERY TURN IIN 1 FT ABOVE AND BELOW ALL ROOF/CEILING ASSEMBLIES, WALLS E LABEL SHALL HAVE 3/8" TALL ON A RED BACKGROUND .	GRID-TII	WISWE 718 RI FORT CO
RKING, "RAPID SHUTDOWN SWITCH ITEM," SHALL BE LOCATED WITHIN 3 DOWN SWITCH. THE LABEL SHALL TERS AND BE REFLECTIVE WITH RED BACKGROUND.		
	S	AFETY LABELS
		PV-4

STRUCTURA	L DESI	GN PARA	METERS			
ELEVATION	4993 FT	4993 FT				
SEISMIC	0.207 S _[0.207 S _{DS}				
WIND (ASCE 7-16)	140 MPI RISK CA	140 MPH, EXPOSURE CATEGORY B, RISK CATEGORY II				
GROUND SNOW LOAD	35 PSF					
ROC)F PRO	PERTIES	6			
ROOF MATERIAL	NON	E, OPE	N TRUSS			
SLOPE	2/12 (9.5	5°)				
MEAN ROOF HEIGHT	11.3FT					
ROOF DECKING	NON	E				
CONSTRUCTION	2x12	TRUSS	ES			
MODULE ME	CHANIC	CAL PRO	PERTIES			
MODEL	TRINA S	OLAR TSM-	415NE09RC.05			
DIMENSIONS (AREA)	69.4IN X	(44.6IN X 1.	2IN (21.5 SQ FT)			
WEIGHT	48.1 LBS	S				
MOUNTING	SYSTE	M PROP	ERTIES			
RAIL MODEL	K2 CRO	SSRAIL 44->	<			
ANCHOR MODEL	К2	K2 , 2.5IN AIR GAP				
FASTENING METHOD	2.5 INCH WITH (1	2.5 INCH EMBEDMENT INTO TRUSSES WITH (1) 5/16IN DIA. FASTENER				
GROUNDING AND BONDING	INTEGR TO UL 2	AL GROUNE 703 REQUIF	DING CERTIFIED REMENTS			
DEAD LO	DAD CA	LCULAT	IONS			
LOAD	QTY	LBS	TOTAL LBS			
MODULES	14	48.1	672.9			
	1					
LINEAR FEET OF RAIL	107 FT	0.5	50.1			
ANCHORS	40	1.2	50.0			
MISC. HARDWARE		5.7	5.7			
TOTAL ARRAY WEIGHT	!		782.0 LBS			
AREA NAME	QTY	SQFT	TOTAL SQFT			
MODULES	14	21.5	301.0			
POINT LOAD (782.0 LBS /	40 ATTAC	HMENTS)	19.6 LBS			
DIST. LOAD (782.0 LBS / 3	301.0 SQF1	Γ)	2.6 PSF			
	NOT	ES				
TRUSS LOCATION MAY NEED TO MA	IS ARE API		. CONTRACTOR NTS TO ANCHOR			

EXCEED "MAX. ANCHOR SPACING"

ANCHOR PLACEMENT PARAMETERS (ASCE 7-16)							
WIND PRESSURE ZONE	MODULE WIND EXPOSURE	Max. Allowable Rail Span	MAX. ANCHOR SPACING	MAX. ALLOWABLE CANTILEVER			
ZONES 1, 2E, 2N, 2R, 3E	NORMAL	52.0IN	33.0IN	17.3IN			
ZONE 3R	NORMAL	51.0IN	33.0IN	17.0IN			

Conductor, Conduit, and OCPD Sizing Validation

1. Maximum System DC Voltage Test

1.1. Tesla inverter w/14 Trina Solar TSM-415NE09RC.05 (415W)s

Array Properties

Array Type	String Inverter Array
System Description	Tesla inverter w/14 Trina Solar TSM- 415NE09RC.05 (415W)s
Module	TSM-415NE09RC.05 (415W)
Highest number of modules in series in a PV Source Circuit	7
Design Low Temp.	-22.6°C
Module voc	50.1V
Temp. Coefficient voc	-0.124V/C

NEC Code Calculations

A. Maximum Voltage of PV Source Circuit 392.1V see NEC 690.7(A)

NEC 690.7(A) requires that if the PV module manufacturer provides a temperature coefficient of open-circuit voltage, it must be used to calculate the PV array's maximum system voltage. It includes an information note recommending the use of the ASHRAE 'Extreme Annual Mean Minimum Design Dry Bulb Temperature' as the design low temperature. Using these values, the module Voc (50.1V) will increase to 56.01V at the design low temperature (-22.6°C).

(-22.6°C - 25°C) X -0.124V/C + 50.1V = 56.01V The string Voc at the design low temperature is 392.1V. 56.01V X 7 = 392.1V

NEC Code Validation Tests

PV Source Circuit maximum Voc must not exceed 600V	PASS
392.1V < 600V = true	

2. Wire, Conduit, and OCPD Code Compliance Validation 2.1. #1: PV Source Circuit: PV Source to Transition Box

Circuit Section Properties

Conductor	10 AWG PV Wire, Copper
Equipment Ground Conductor (EGC)	6 AWG Bare, Copper
OCPD(s)	N/A
Raceway/Cable	Free Air
Lowest Terminal Temperature Rating	90 °C
Maximum Wire Temperature	33 °C
Power Source Description	String of 7 TSM-415NE09RC.05 (415W) PV modules
Power Source Current	10.5A
Voltage	294V - 350V
Module Series Fuse Rating	20A
Total Number of Series Strings	1

NEC Code Calculations

A. Continuous Current	13.13A
see NEC 690.8(A)(1)(a)(1)	

The continuous current for this PV source circuit is equal to the short circuit current of the PV module (10.5A) multiplied by 1.25 10.5A X 1.25 = 13.13A

B. Ampacity of Conductor	55A
see NEC Table 310.17	

Ampacity (30°C) for a copper conductor with 90°C insulation in free air is 55A.

C. Derated Ampacity of Conductor 53A see NEC 310.15(B)(2), NEC Table 310.15(C)(1), and NEC Article 100

The temperature factor for 90°C insulation at 33°C is 0.96. The fill factor for conductors in free air is 1. The ampacity derated for Conditions of Use is the product of the conductor ampacity (55A) multiplied by the temperature factor (0.96) and by the fill factor (1). 55A X 0.96 X 1 = 52.8A rounded to 53A

D. Max Current for Terminal Temp. Rating 40A see NEC 110.14(C)

The lowest temperature rating for this conductor at any termination is 90°C.

Using the method specified in NEC 110.14(C), the maximum current permitted to ensure that the device terminal temperature does not exceed its 90°C rating would be the amount referenced in the 90°C column in NEC Table 310.16, which is 40A.

E. Minimum Required EGC Size	12 AWG
see NEC 690.45 and NEC Table 250.122	

No OCPD is used in circuit and an assumed rating of 16A has been calculated in accordance with NEC 690.45 The smallest EGC size allowed is 12 AWG for OCPD rating 16A according to Table 250.122.

According to NEC 690.45, it is not necessary to increase the size of the PV array's EGC when conductors are oversized for voltage drop considerations.

NEC Code Validation Tests

1.	System must meet requirements for not having series fuse (NEC 690.9(A))	PASS
2.	Derated Ampacity must be greater than or equal to the Continuous Current (NEC Article 100) 53A >= 13.13A = true	PASS
3.	Conductor Ampacity must be at least 125% of Continuous Current (NEC 215.2(A)(1)) 55A >= 13.13A x 1.25 = true	PASS
4.	Max current for terminal must be at least 125% of the Continuous Current. (NEC 110.14(C)) 40A >= 13.13A X 1.25 = true	PASS
5.	EGC must meet code requirements for minimum size (NEC Table 250.122) 6 AWG >= 12 AWG = true	PASS
6.	EGC must meet code requirements for physical protection (NEC 250.120(C)) 6 AWG >= 6 AWG = true	PASS

2.2. #2: PV Source Circuit: Transition Box to Inverter

Circuit Section Properties

Conductor	10 AWG THWN-2, Copper
Equipment Ground Conductor (EGC)	10 AWG THWN-2, Copper
OCPD(s)	N/A
Raceway/Cable	0.75" dia. EMT
Lowest Terminal Temperature Rating	75 °C
Maximum Wire Temperature	33 °C
Power Source Description	String of 7 TSM-415NE09RC.05 (415W) PV modules
Power Source Current	10.5A
Voltage	294V - 350V
Module Series Fuse Rating	20A
Total Number of Series Strings	1

NEC Code Calculations

A. Continuous Current	13.13A
see NEC 690.8(A)(1)(a)(1)	

The continuous current for this PV source circuit is equal to the short circuit current of the PV module (10.5A) multiplied by 1.25 10.5A X 1.25 = 13.13A

B. Ampacity of Conductor40see NEC Table 310.16	A	1.
Ampacity (30°C) for a copper conductor with 90°C insulation in conduit/cable is 40A.		2.
C. Derated Ampacity of Conductor 31	A	
see NEC 310.15(B)(2), NEC Table 310.15(C)(1), and NEC Article 100		3.
The temperature factor for 90°C insulation at 33°C is 0.96. The fill factor for a conduit/cable that has 4 wires is 0.8.		
The ampacity derated for Conditions of Use is the product of the conductor ampacity (40A) multiplied by the temperature factor (0.96) an by the fill factor (0.8).	d	4.
40A X 0.96 X 0.8 = 30.72A rounded to 31A		
		5.
D. Max Current for Terminal Temp. Rating 35 see NEC 110.14(C)	A	

The lowest temperature rating for this conductor at any termination is 75°C.

Using the method specified in NEC 110.14(C), the maximum current permitted to ensure that the device terminal temperature does not exceed its 75°C rating would be the amount referenced in the 75°C column in NEC Table 310.16, which is 35A.

E. N see /	E. Minimum Required EGC Size 1: see NEC 690.45 and NEC Table 250.122				12 AWG
No O calcu The s accor Acco PV at consi	No OCPD is used in circuit and an assumed rating of 16A has been calculated in accordance with NEC 690.45 The smallest EGC size allowed is 12 AWG for OCPD rating 16A according to Table 250.122. According to NEC 690.45, it is not necessary to increase the size of the PV array's EGC when conductors are oversized for voltage drop considerations.				
F. N see /	linimum Recom NEC 300.17	mended	Conduit	Size	0.5" dia.
The t 0.4, t	otal area of all condu he recommended co	ctors is 0.1 nduit diame	055in². With ter is 0.5.	a maximur	m fill rate of
Qty	Description	Size	Туре	Area	Total Area
4	Conductor	10 AWG	THWN-2	0.0211in ²	0.0844in ²
1	Equipment Ground	10 AWG	THWN-2	0.0211in ²	0.0211in ²
5					0.1055in ²
0.105	55in² / 0.4 = 0.2638in ⁴	² (Correspo	nding to a d	iameter of (0.5")
NEC (Code Validation To	ests			
1. System must meet requirements for not having series fuse (NEC 690.9(A))				PASS	
2.	Derated Ampacity must be greater than or equal to the Continuous Current (NEC Article 100) 31A >= 13.13A = true			to PASS	
3.	Conductor Ampacity must be at least 125% of Continuous Current (NEC 215.2(A)(1)) 40A >= 13.13A x 1.25 = true			PASS	
4.	Max current for terminal must be at least 125% of the Continuous Current. (NEC 110.14(C)) 35A >= 13.13A X 1.25 = true			f PASS	
5.	 EGC must meet code requirements for minimum size (NEC Table 250.122) 10 AWG >= 12 AWG = true 			PASS	
6.	 Conduit must meet code recommendation for minimum size (NEC 300.17) 0.75in. >= 0.5in. = true 			PASS	

2.3. #3: Inverter Output: Inverter to Utility Disconnect

Circuit Section Properties

Conductor	8 AWG THWN-2, Copper
Equipment Ground Conductor (EGC)	10 AWG THWN-2, Copper
OCPD(s)	40A
Raceway/Cable	1.0" dia. PVC-80
Lowest Terminal Temperature Rating	60 °C
Maximum Wire Temperature	33 °C
Power Source Description	7600W Inverter
Power Source Current	32A
Voltage	240V
Inverter Max OCPD rating	40A

NEC Code Calculations

A. Continuous Current 32A see NEC Article 100	1. OCPD rating must be at least 125% of Continuous Current (NEC 240.4) 40A >= 32A X 1.25 = true	PASS
Equipment maximum rated output current is 2 X 10.5A = 32A	2 Derated ampacity must exceed OCPD rating, or	PASS
B. Ampacity of Conductor 55A see NEC Table 310.16	rating of next smaller OCPD (NEC 240.4) 53A >= 40A (OCPD Rating) = true	
Ampacity (30°C) for a copper conductor with 90°C insulation in conduit/cable is 55A.	3. Derated Ampacity must be greater than or equal to the Continuous Current (NEC Article 100) 53A >= 32A = true	PASS
C. Derated Ampacity of Conductor 53A see NEC 310.15(B)(2), NEC Table 310.15(C)(1), and NEC Article 100	4. Conductor Ampacity must be at least 125% of Continuous Current (NEC 215 2(A)(1))	PASS
The temperature factor for 90°C insulation at 33°C is 0.96.	$55A \ge 32A \times 1.25 = true$	
The ampacity derated for Conditions of Use is the product of the conductor ampacity (55A) multiplied by the temperature factor (0.96) and by the fill factor (1).	5.Max current for terminal must be at least 125% of the Continuous Current. (NEC 110.14(C)) 40A >= 32A X 1.25 = true	PASS
55A X 0.96 X 1 = 52.8A rounded to 53A	6. EGC must meet code requirements for minimum	PASS
D. Max Current for Terminal Temp. Rating 40A see NEC 110.14(C)	size (NEC Table 250.122) 10 AWG >= 10 AWG = true	
The lowest temperature rating for this conductor at any termination is 60°C. Using the method specified in NEC 110.14(C), the maximum current	7. Conduit must meet code recommendation for minimum size (NEC 300.17) 1.0in. >= 0.75in. = true	PASS

B. Ampacity of Conductor	55
see NEC Table 310.16	

C. D see N

D. N see N

Using permitted to ensure that the device terminal temperature does not exceed its 60°C rating would be the amount referenced in the 60°C column in NEC Table 310.16, which is 40A.

E. Minimum Allowed OCPD Rating	40/
see NEC 240.4	

NEC 690.9(B)(1) requires OCPD be rated for no less than 1.25 times Continuous Current of the circuit.

32A X 1.25 = 40A

F. Minimum Required EGC Size 10 AWG see NEC Table 250.122

The smallest EGC size allowed is 10 AWG for OCPD rating 40A according to Table 250.122.

G. Minimum Recommended Conduit Size 0.75" dia. see NEC 300.17

The total area of all conductors is 0.1309in². With a maximum fill rate of 0.4, the recommended conduit diameter is 0.75.

Qty	Description	Size	Туре	Area	Total Area
2	Conductor	8 AWG	THWN-2	0.0366in ²	0.0732in ²
1	Neutral	8 AWG	THWN-2	0.0366in ²	0.0366in ²
1	Equipment Ground	10 AWG	THWN-2	0.0211in ²	0.0211in ²
4					0.1309in ²

 $0.1309in^2 / 0.4 = 0.3273in^2$ (Corresponding to a diameter of 0.75")

NEC Code Validation Tests

2.4. #4: Utility Disconnect Output: Utility Disconnect to Main Service Panel

Circuit Section Properties

Conductor	8 AWG THWN-2, Copper
Equipment Ground Conductor (EGC)	10 AWG THWN-2, Copper
OCPD(s)	40A
Raceway/Cable	0.75" dia. EMT
Lowest Terminal Temperature Rating	75 °C
Maximum Wire Temperature	33 °C
Power Source Description	7600W Inverter
Power Source Current	32A
Voltage	240V

G. Minimum Recommended Conduit Size 0.75" dia. *see NEC 300.17*

The total area of all conductors is $0.1309in^2$. With a maximum fill rate of 0.4, the recommended conduit diameter is 0.75.

Qty	Description	Size	Туре	Area	Total Area
2	Conductor	8 AWG	THWN-2	0.0366in ²	0.0732in ²
1	Neutral	8 AWG	THWN-2	0.0366in ²	0.0366in ²
1	Equipment Ground	10 AWG	THWN-2	0.0211in ²	0.0211in ²
4					0.1309in ²

 $0.1309in^2 / 0.4 = 0.3273in^2$ (Corresponding to a diameter of 0.75")

NEC Code Validation Tests

32A	1.	OCPD rating must be at least 125% of Continuous Current (NEC 240.4) 40A >= 32A X 1.25 = true	PASS
55A	2.	Derated ampacity must exceed OCPD rating, or rating of next smaller OCPD (NEC 240.4) 53A >= 40A (OCPD Rating) = true	PASS
53A	3.	Derated Ampacity must be greater than or equal to the Continuous Current (NEC Article 100) 53A >= 32A = true	PASS
100	4.	Conductor Ampacity must be at least 125% of Continuous Current (NEC 215.2(A)(1)) 55A >= 32A x 1.25 = true	PASS
δ) and	5.	Max current for terminal must be at least 125% of the Continuous Current. (NEC 110.14(C)) 50A >= 32A X 1.25 = true	PASS
50A	6.	EGC must meet code requirements for minimum size (NEC Table 250.122) 10 AWG >= 10 AWG = true	PASS
nt exceed	7.	Conduit must meet code recommendation for minimum size (NEC 300.17) 0.75in. >= 0.75in. = true	PASS

Equipment maximum rated output current is 2 X 10.5A = 32A

NEC Code Calculations

A. Continuous Current see NEC Article 100

B. Ampacity of Conductor see NEC Table 310.16	55A
Ampacity (30°C) for a copper conductor with 90°C insulation in conduit/cable is 55A.	

C. Derated Ampacity of Conductor 53A see NEC 310.15(B)(2), NEC Table 310.15(C)(1), and NEC Article 100

The temperature factor for 90°C insulation at 33°C is 0.96. The fill factor for a conduit/cable that has 2 wires is 1. The ampacity derated for Conditions of Use is the product of the conductor ampacity (55A) multiplied by the temperature factor (0.96) and by the fill factor (1).

55A X 0.96 X 1 = 52.8A rounded to 53A

D. Max Current for Terminal Temp. Rating 50A see NEC 110.14(C)

The lowest temperature rating for this conductor at any termination is 75°C.

Using the method specified in NEC 110.14(C), the maximum current permitted to ensure that the device terminal temperature does not exceed its 75°C rating would be the amount referenced in the 75°C column in NEC Table 310.16, which is 50A.

E. Minimum Allowed OCPD Rating	40A
see NEC 240.4	

NEC 690.9(B)(1) requires OCPD be rated for no less than 1.25 times Continuous Current of the circuit.

32A X 1.25 = 40A

F. Minimum Required EGC Size	10 AWG
see NEC Table 250.122	

The smallest EGC size allowed is 10 AWG for OCPD rating 40A according to Table 250.122.

N-TYPE MODULE

435W MAXIMUM POWER OUTPUT

PRODUCT: TSM-NE09RC.05

PRODUCT RANGE: 410-435W

21.8% MAXIMUM EFFICIENCY

Smaller panel, Bigger power generation

- Up to 435W, 21.8% module efficiency.
- Reduce installation cost with higher module power on the roof.
- Boost performance in warm weather with lower temperature coefficiency

High Reliability

0~+5W

POSITIVE POWER TOLERANCE

•Innovative non-destructive cell cutting technology for improved mechanical resistance and strength

Lower Degradation, longer warranty, higher output

• First-year degradation 1% and annual degradation at 0.4% • Up to 25 years product warranty and 25 years power warranty

Universal solution for residential and C&I rooftops

• Easy for integration, designed for compatibility with existing mainstream inverters and diverse mounting systems

- Perfect size and low weight for handling and installation
- Most valuable solution on low load capacity rooftops
- Mechanical performance up to 6000 Pa positive load and 4000 Pa negative load

Trina Solar's Vertex Bifacial Dual Glass Performance Warranty

Vertex S⁺

DIMENSIONS OF PV MODULE(mm)

ELECTRICAL DATA (STC)

Peak Power Watts-PMAX (Wp)*	410	415	420	425	430	435	Solar Cells	Topcon Bifacial
Power Tolerance-PMAX (W) 0 ~ +5						No. of cells	144cells	
		42.1	42.5	42.9	42.2	12.6	Module Dimensions	1762×1134×30 mm (69.37×44.65×1.18 inches)
Maximum Power Voltage-V MPP (V)	41.0	42.1	42.5	42.0	43.2	45.0	Weight	21.8kg (48.06 lb)
Maximum Power Current-I MPP (A)	.) 9.81 9.85 9.89 9.92 9.95 9.99		Front Glass	3.2 mm (0.12inches), High Transmission, AR Coated Heat Strengthened Glass				
Open Circuit Voltage-V oc (V)	49.7	50.1	50.5	50.9	51.4	51.8	Encapsulant material	EVA/POE
Short Circuit Current-I sc (A)	10.46	10.50	10.54	10.57	10.60	10.65	BackSheet	Black Grid Transparent Backsheet
Module Efficiency n m (%)	dule Efficiency n m (%) 20.5 20.8		21.0	21.3	21.5	21.8	Frame	30mm (1.18 inches) Anodized Aluminium Alloy, Black
STC: Irrdiance 1000W/m2, Cell Temperature 25°C, Air Mass	AM1.5.	*Measuring toler	rance: ±3%.				J-Box	IP 68 rated
Electrical characteristics with differ	ent powe	r bin (refer	rence to 10	0% Irradia	nce ratio)	Cables	Photovoltaic Technology Cable 4.0mm ² (0.006 inches ²),	
Total Equivalent power -PMAX (Wp) 437		137 442 447 453		458	463		Landscape: N 1100 mm /P 1100 mm (43.31/43.31 inches)	
Maximum Power Voltage-VMPP (V)	Aaximum Power Voltage-VMPP (V) 41.8 42.1 42.5 43.2 43.6		Connector	MC4 FVo2				

A-A

Total Equivalent power -PMAX (Wp)	437	442	447	453	458	463		Landscape: N 11	.00 mm /P 1100 mm (43.31/43.3	31 inches)
Maximum Power Voltage-VMPP (V)	41.8	42.1	42.5		43.2	43.6	Connector	MC4 FVo2		
Maximum Power Current-IMPP (A)	10.45	10.49	10.53	10.56	10.60	10.64	Fire Type	Type 1 or Type	2	
Open Circuit Voltage-Voc (V)	49.7	50.1	50.5	50.9	51.4	51.8		51 51-		
Short Circuit Current-Isc (A)	11.14	11.18	11.22	11.26	11.29	11.34		4296 (1.296)		40
Irradiance ratio (rear/front)			10	%			Temperature Coefficient of PMAX	43°C (±2°C) - 0.30%/°C	Maximum System Voltage	-40~+85°C
Power Bifaciality:65±10%.							Temperature Coefficient of Voc	- 0.25%/°C	Max Series Fuse Rating	20A
ELECTRICAL DATA (NOCT)							Temperature Coefficient of lsc	0.04%/°C		
Maximum Power-Р мах (Wp)	312	316	320	323	327	332				
Maximum Power Voltage-VMPP (V)	47.1	47.5	47.9	48.2	48.7	49.1	WARRANTY		PACKAGING CONFIGUREA	TION
Maximum Power Current-IMPP (A)	8.43	8.46	8.49	8.52	8.54	8.58	25 year Product Workmanship War	ranty	Modules per box: 36 pieces	
Open Circuit Veltage Vec (V)	30.0	20.2	20.6	30.0	40.3	40.6	25 year Power Warranty		Modules per 40' container: 8	28 pieces
open circuit voltage-VOC(V)	39.0	29/2	39.0	39.9	40.5	40.0	1% first year degradation			
Short Circuit Current-Isc (A)	8.01	8.04	8.07	8.09	8.12	8.16	0.4% Annual Power Attenuation			
NOCT: Irradiance at 800W/m ² , Ambient Temperature 2	20°C. Wind Speed 1m	1/s.					(Plazca refer to product warranty for details)			

Comprehensive Products and System Certificates

IEC61215/IEC61730/IEC61701/IEC62716/UL61730 ISO 9001: Quality Management System ISO 14001: Environmental Management System ISO14064: Greenhouse Gases Emissions Verification ISO45001: Occupational Health and Safety Management System

Trinasolar

CAUTION: READ SAFETY AND INSTALLATION INSTRUCTIONS BEFORE USING THE PRODUCT. © 2023 Trina Solar Co., Ltd. All rights reserved. Specifications included in this datasheet are subject to change without notice. Version number: TSM_NA_2023_A

MECHANICAL DATA

- Please refer to product warranty for details

www.trinasolar.com

Tesla Solar Inverter with Site Controller

Tesla Solar Inverter completes the Tesla home solar system, converting DC power from solar to AC power for home consumption. Tesla's renowned expertise in power electronics has been combined with robust safety features and a simple installation process to produce an outstanding solar inverter that is compatible with both Solar Roof and traditional solar panels. Once installed, homeowners use the Tesla mobile app to manage their solar system and monitor energy consumption, resulting in a truly unique ecosystem experience.

KEY FEATURES

- Built on Powerwall technology for exceptional efficiency and reliability
- Wi-Fi, Ethernet, and cellular connectivity with easy over-the-air updates
- Designed to integrate with Tesla Powerwall and Tesla App
- 0.5% revenue-grade metering for Solar Renewable Energy Credit (SREC) programs included

Tesla Solar Inverter Technical Specifications

Electrical Specifications: Output (AC)

Model Number Output (AC)¹

Nominal Power Maximum Apparent Power Maximum Continuous Current **Breaker (Overcurrent Protect** Nominal Power Factor THD (at Nominal Power)

Electrical Specifications: Input (DC)

MPPT

Input Connectors per MPPT Maximum Input Voltage DC Input Voltage Range DC MPPT Voltage Range Maximum Current per MPPT Maximum Short Circuit Curre MPPT (I_{sc})

¹Maximum current. intake additional DC current up to 26 A I_{MP} / 34 A I_{SC} .

Performance Specifications Peak Efficiency **CEC Efficiency** Allowable DC/AC Ratio Customer Interface Internet Connectivity

Revenue Grade Meter AC Remote Metering Suppor Protections

Supported Grid Types Warranty

³Cellular connectivity subject to network operator service coverage and signal strength.

	1538000-xx-y								
	3.8 kW	5 kW	5.7 kW	7.6 kW					
	3,800 W	5,000 W	5,700 W	7,600 W					
	3,840 VA	5,040 VA	6,000 VA	7,680 VA					
t	16 A	21 A	24 A	32 A					
tion)	20 A	30 A	30 A	40 A					
	1 - 0.9 (leading / lagging								
	<5%								

	4
	1-2-1-2
	600 VDC
	60 - 550 VDC
	60 - 480 VDC ¹
(I _{MP})	13 A ²
ent per	17 A ²

 $^2 \rm Where \ the \ DC$ input current exceeds an MPPT rating, jumpers can be used to allow a single MPPT to

	98.6% at 240 V
	50.0% dt 240 V
	98.0% at 240 V
	1.7
	Tesla Mobile App
	Wi-Fi (2.4 GHz, 802.11 b/g/n), Ethernet, Cellular (LTE/4G)³
	Revenue Accurate (+/- 0.5%)
t	Wi-Fi (2.4 GHz, 802.11 b/g/n), RS-485
	Integrated arc fault circuit interrupter (AFCI), Rapid Shutdown
	60 Hz, 240 V Split Phase
	12.5 years

Tesla Solar Inverter Technical Specifications

D222NRB SWITCH FUSIBLE GD 240V 60A 2P NEMA3R

Green Premium"

Contractual warranty	
Warranty	

18 months

Product availability: Stock - Normally stocked in distribution facility

Main		
Product	Single Throw Safety Switch	
Current Rating	60 A	
Certifications	UL listed file E2875	
Enclosure Rating	NEMA 3R	
Disconnect Type	Fusible disconnect switch	
Factory Installed Neutral	Neutral (factory installed)	
Short Circuit Current Rating	100 kA maximum depending on fuse H, K or R	
Mounting Type	Surface	
Number of Poles	2	
Electrical Connection	Lugs	of.
Duty Rating	General duty	there
Voltage Rating	240 V AC	r use
Wire Size	AWG 12AWG 3 aluminium AWG 14AWG 3 copper	ication o
) Decific app
189.23 mm (7.45 in)		ein. ns. evant sp
377.95 mm (14.88 in)		d her catior e rele
123.70 mm (4.87 in)		appli to th

Complementary

Width	189.23 mm (7.45 in)
Height	377.95 mm (14.88 in)
Depth	123.70 mm (4.87 in)
Tightening torque	3.95 N.M (35 lbf.in) 0.000.01 in ² (2.085.26 mm ²) AWG 14AWG 10) 3.95 N.M (35 lbf.in) AWG 14AWG 10) 5.08 N.M (45 lbf.in) 0.01 in ² (8.37 mm ²) AWG 8) 5.08 N.M (45 lbf.in) 0.020.03 in ² (12.321.12 mm ²) AWG 6AWG 4) 5.65 N.m (50 lbf.in) 0.04 in ² (26.67 mm ²) AWG 3)
Ordering and shipping details	
Category	00106 - D & DU SW,NEMA3R, 30-200A
Discount Schedule	DE1A
GTIN	00785901460640
Package weight(Lbs)	3.74 kg (8.25 lb(US))
Returnability	Yes
Country of origin	US
Offer Sustainability	
Sustainable offer status	Green Premium product
California proposition 65	WARNING: This product can expose you to chemicals including: Lead and lead compounds which is known to the State of California to cause Carcinogen & Re- productive harm. For more information go to www.p65warnings.ca.gov
REACh Regulation	REACh Declaration
REACh free of SVHC	Yes
EU RoHS Directive	Compliant Contraction

Circularity Profile

Mercury free

RoHS exemption information

China RoHS Regulation

Environmental Disclosure

Life Is On Schneider

China RoHS Declaration

Product Environmental Profile

No need of specific recycling operations

Yes

Yes

The information provided in this dc This documentation is not intended It is the duty of any such user or in Neither Schneider Electric Industri

1

July 21, 2021

Everest Solar Systems LCC 2835 La Mirada Dr, Suite A Vista, CA 92081 TEL: (760) 301-5300

Attn.: Everest Solar - Engineering Department

Re: Report # 20-02753vHG.01 – Everest Solar CrossRail - 44-X Dual Rail System for Gable and Hip Roofs Subject: Engineering Certification for the State of Colorado

PZSE, Inc. – Structural Engineers has provided engineering and span tables for the Everest Solar CrossRail, as presented in PZSE Report # 20-02753vHG.01, "Engineering Certification for the Everest Solar CrossRail - Dual Rail System for Gable and Hip Roofs". All information, data, and analysis therein are based on, and comply with, the following building codes and typical specifications:

Building Codes:

- 1. ASCE/SEI 7-16, Minimum Design Loads for Buildings and Other Structures, by American Society of Civil Engineers
 - 2. 2018 International Building Code, by International Code Council, Inc.
 - 3. 2018 International Residential Code, by International Code Council, Inc.
 - 4. AC428, Acceptance Criteria for Modular Framing Systems Used to Support Photovoltaic (PV) Panels, November 1, 2012 by ICC-ES
 - 5. Aluminum Design Manual 2015, by The Aluminum Association, Inc.
 - 6. ANSI/AWC NDS-2018, National Design Specification for Wood Construction, by the American Wood Council

Design Criteria:

Risk Category II Seismic Design Category = A - E Exposure Category = B, C & D Basic Wind Speed (ultimate) per ASCE 7-16 = 95 mph to 200 mph Ground Snow Load = 0 to 100 (psf)

This letter certifies that the loading criteria and design basis for the Everest Solar CrossRail Span Tables are in compliance with the above codes.

If you have any questions on the above, do not hesitate to call.

Prepared by: PZSE, Inc. – Structural Engineers Roseville, CA

1478 Stone Point Drive, Suite 190, Roseville, CA 95661 T 916.961.3960 F 916.961.3965 W www.pzse.com Experience | Integrity | Empowerment

October 7, 2021

K2 Systems 2835 La Mirada Dr, Suite A Vista, CA 92081 TEL: (760) 301-5300

Attn.: K2 Systems - Engineering Department

Re: Report # 20-02753vMS.01 – K2 Systems CrossRail - 44-X Dual Rail System for Monoslope Roofs Subject: Engineering Certification for the State of Colorado

PZSE, Inc. – Structural Engineers has provided engineering and span tables for the K2 Systems CrossRail, as presented in PZSE Report # 20-02753vMS.01, "Engineering Certification for the K2 Systems CrossRail - Dual Rail System for Monoslope Roofs". All information, data, and analysis therein are based on, and comply with, the following building codes and typical specifications:

Building Codes:

Society of Civil Engineers

- (PV) Panels, November 1, 2012 by ICC-ES
- American Wood Council

Design Criteria:

Risk Category II Seismic Design Category = A - E Exposure Category = B, C & D Basic Wind Speed (ultimate) per ASCE 7-16 = 95 mph to 200 mph Ground Snow Load = 0 to 100 (psf)

This letter certifies that the loading criteria and design basis for the K2 Systems CrossRail Span Tables are in compliance with the above codes.

If you have any questions on the above, do not hesitate to call.

Prepared by: PZSE, Inc. – Structural Engineers Roseville, CA

> 1478 Stone Point Drive, Suite 190, Roseville, CA 95661 T 916.961.3960 F 916.961.3965 W www.pzse.com Experience | Integrity | Empowerment

1. ASCE/SEI 7-16, Minimum Design Loads for Buildings and Other Structures, by American

2. 2018 International Building Code, by International Code Council, Inc.

3. 2018 International Residential Code, by International Code Council, Inc.

4. AC428, Acceptance Criteria for Modular Framing Systems Used to Support Photovoltaic

5. Aluminum Design Manual 2015, by The Aluminum Association, Inc.

6. ANSI/AWC NDS-2018, National Design Specification for Wood Construction, by the

DIGITALLY SIGNED

Fire Rating

The CrossRail System has undergone fire performance testing in accordance with UL 2703, Fire Performance. A System Class A fire rating is achieved when using CrossRail 44-X/48-X/48-XL under the following conditions:

- Roof slope of 2/12" rise per linear foot or greater
- Used in combination with a UL 1703 Listed module with a fire performance rating of Type 1, Type 2, or Type 3. Consult the module manufacturer for specific fire performance rating information.
- CrossRail may be mounted using any stand-off height to maintain the Class A fire rating. Always consult the module manufacturer's installation instructions to ensure your installation is in compliance with their UL 1703 Listing.
- The results of the racking system do not improve a roof covering Class rating.

All documentation can be found on UL's Online Database as well as K2 Systems' website.

Bonding and Grounding

Appropriate means of bonding and grounding are required by regulation. The information provided in this manual shall always be verified with local and national building codes.

Everest Solar Systems has obtained a UL 2703 system listing from Underwriter's Laboratories (UL).

A sample bonding path diagram is shown in Figure 1 below. Your specific installation may vary, based upon site conditions and your AHJ's requirements.

Each electrical connection has been evaluated to a maximum fuse rating of 30A. At least one ground lug per row of modules must be used to ground all strings within each sub-array, although additional may be used for redundancy. When installed per these installation instructions, all connections meet the requirements of NEC 690.43.

This racking system may be used to ground and/or mount a PV module complying with UL 1703 only when the specific module has been evaluated for grounding and/or mounting in compliance with the included instructions.

Compatible Modules

K2's CrossRail System was tested with the following:

UL/NRTL Listed Aptos Solar Modules:	CONTINUED - Canadian Solar Inc Modules:	CONTINUED - Hanwha Q Cells Modu
· DNA-120-MF26-XXXW	· CS6K-xxxM	· Q.PEAK DUO L-G6.2 xxx
· DNA-144-MF26-XXXW	· CS6K-P-FG DYMOND	· Q.PEAK DUO L-G6.3 xxx
· DNA-120-BF23-XXXW		· Q.PLUS DUO L-G5 xxx
· DNA-120-MF23-XXXW	UL/NRTL Listed CertainTeed Modules:	· Q.PLUS DUO L-G5.1 xxx
· DNA-144-BF23-XXXW	· CTXXXHC11-04	· Q.PLUS DUO L-G5.2 xxx
· DNA-144-MF23-XXXW	· CTXXXHCOO-O4	· Q.PLUS DUO L-G5.3 xxx
	· CTxxxHC11-06	· Q.PEAK DUO L-G5.2 xxx
UL/NRTL Listed Axitec Modules:		· Q.PEAK DUO L-G5.3 xxx
· AC-xxP/156-60S	UL/NRTL Listed ET Solar Modules:	· Q.PEAK L-G4.2 xxx
· AC-xxxM/156-60S	· ET-M660xxxBB	· Q.PEAK L-G4.1 xxx
· AC-xxxP/60V		· Q.PLUS L-G4.2 xxx
· AC-xxxP/60xV	UL/NRTL Listed Hansol Modules:	· Q.PLUS L-G4.1 xxx
· AC-xxxP/60S	· UB-AN1 Black 270-300	· Q.PLUS L-G4 xxx
· AC-xxxP/60x	· UBAN1 Silver 270-300	· Q.PEAK DUO BLK G6+/SC xxx
· AC-xxxMH/120S	· UD-AN1 330-360	· Q.PEAK DUO G5/SC xxx
· AC-xxxM/60V		· Q.PEAK DUO BLK G5/SC xxx
· AC-xxxM/60xV	UL/NRTL Listed Hanwha Q Cells Modules:	· Q.Plus BFR-G4.1xxx
· AC-xxxMH/120V	· Q.PEAK- G4.1/MAx xxx	· Q.Pro BFR-G4.1xxx
· AC-xxxM/60S	· Q.PEAK BLK G4.1 xxx	· Q.Pro-G4.1/SCxxx
· AC-xxxM/60x	· Q.PRO G4 xxx	· Q.PLUS BFR G4.1 xxx
· AC-xxxP/156-72S	· Q.PLUS G4 xxx	· Q.PRO BFR G4 xxx
AC-XXXP/72V	· Q.PEAK-G4.1/TAA xxx	· Q.PRO BFR G4.1 xxx
AC-XXXP/72XV	· Q.PEAK BLK G4.1/TAA xxx	· Q.PRO BFR G4.3 xxx
AC-XXXP/72S	· Q.PLUS BFR G4.1/TAA xxx	· Q.PEAK-G4.1 xxx
AC-XXXP/72X	· Q.PLUS BFR G4.1/MAx xxx	· Q. PEAK DUO BLK G6+/TS XXX
AC-XXXMH/144S	· B.LINE PLUS BFR G4.1 xxx	· Q.PEAK DUO G5/TS-XXX
AC-XXXM/72V	· B.LINE PRO BFR G4.1 xxx	· Q.PEAK DUO BLK G6/TS XXX
AC-XXXM/72XV	· Q.PEAK DUO-G5 xxx	· Q.PEAK DUO G6/TS-XXX
· AC-XXXMH/144V	Q.PEAK DUO BLK-G5 xxx	· Q.PEAK DUO G6+/TS-XXX
· AC-XXXM/72S	Q.PEAK DUO-G8 xxx	· Q.PEAK DUO ML-G9 XXX
AC-XXXM/72X	0.PEAK DUO BLK-G8 xxx	0.PEAK DUO ML-G9.2 XXX
	Q.PEAK DUO-G7 xxx	· Q.PEAK DUO ML BLK-G9 XXX
UL/NRTL Listed Boviet Modules:	Q.PEAK DUO BLK-G7 xxx	· Q.PEAK DUO ML BLK-G9.2 XXX
BVM6612M 72-Cell Mono	0.PEAK DUO G7.2 xxx	· Q.PEAK DUO XL-G9 XXX
	· 0.PEAK DUO-G6 xxx	· O.PEAK DUO XL-G9.2 XXX
JL/NRTL Listed Canadian Solar Inc. Modules:	· Q.PEAK DUO BLK-G6 xxx	Q.PEAK DUO XL BLK-G9 XXX
CS6U-xxx	· 0.PEAK DUO BLK-G6+ xxx	· O.PEAK DUO XL BLK-G9.2 XXX
CS6K-xxx	· 0.PEAK DUO-G6+ xxx	· O.PEAK DUO XL BLK-G9.3 XXX
CS6X-xxx	· 0.PEAK DUO-G8+ xxx	· O.PEAK DUO XL -G9.3 XXX
CS6P-xxx	· 0.PEAK DUO BLK-G8+ xxx	· O.PEAK DUO ML -G9.3 XXX
CS3K-xxxP	• 0.PEAK DUO I-G8.3 xxx	• 0.PEAK DUO ML BLK -G9.3 XXX
CS3K-xxxMS	• 0.PEAK DUD I-G8.2 xxx	• 0.PEAK DUO ML -G9 XXX
CS3U-xxxP	• 0.PEAK DUO I-G8.1 xxx	• 0.PEAK DUO ML -G9+ XXX
CS3U-xxxMS	• 0.PEAK DUO L-G8 xxx	• 0.PEAK DUO BI K MI -69+ XXX
CS3W-xxxP	• 0.PEAK DUO L 67 3 xxx	
CS3II-xxxPR-AG	• O PEAK DUO L 67.2 vvv	Q.1 LAK BOO DEK ME-00 XXX
CS3II_vvvMR_AG	• Q.FLAN DOUL-07.2 XXX	III /NRTL Listed Hyundai Madulaa;
CS3W_vvvB_AC		
ΟΟΤΠ-XXXΜ9	· U.PEAK DUU L-GB XXX	· HI9-MXXXMI

Compatible Modules continued

K2's CrossRail System was tested with the following:

CONTINUED - Mission Solar Modules:	CONTINUED - Sanvo
MSExxxSB1.I	Panasonic Group M
· MSExxxSX5T	· VBHNxxxSA16
· MSExxxSX5K	· VBHNxxxSA17
· MSExxxSX6S	· VBHNxxxSA18
· MSExxxSX6W	· VBHNxxxKA01
HELMANN	· VBHNxxxKA03
▶ III /NRTL Listed Panasonic Modules:	· VBHNxxxKAO4
· VBHNxxxSA16	· MSExxxSX6W
· VBHNxxxKA01	HOLAKONON
· VBHNXXXKAD3	▶ III /NRTL Listed Sera
· VBHNxxxKAN4	· SEG-XXX-6MA-HV
· VBHNxxxSA17	· SEG-XXX-BMA-HV
· VBHNxxxSA18	
· VBHNxxxSA17F	III /NRTL Listed Silfa
· FVPVxxx	· SI AxxxM
· FVPVxxxK	· SIG-M-xxx
	· SI A-Y-YYY
III /NPTL Listed Peimar Modules:	. SI G_Y_YYY
· SGyyyP-(BE)	· SII - YYY BI
. SGvvvP	· SIL-XXX HI
· SGvvvM-(BE)	SIL-XXX NI
· SGvvvM	· SIL-XXX ML
00000	SIL-XXX ME
III /NRTL Listed Phone Solar Modules:	· SIL-XXX RK
 PSvvvMG-20/II 	· SIL-XXX NIL
· PSvvvPG-20/11	· SIL -XXX NX
. PSvvvM_20/11	JIL-XXX NX
. PSvvvMH_20/U	III /NPTL Listed Share
F SAAAMIT-EO/O	
III /NPTL Listed Drism Solar Modules:	NU-SGXXX
 Bi//8 vvv Rifacial 	NO-SAXAX
BIGO XXX Bifacial	III /NPTL Listed Sola
biod XXX biraciai	· DowervT® -vvvD-D
III /NPTI Listed PEC Modules:	· PowerxT® -xxxR-F
	FUWEIXI S XXXR-F
	NUL/NETL Listed Sala
. DECVVVTD2SM 72 YV	"Supmodulo":
	Dlug SW XXX Mana
	Plus SW XXX Muliu
	· Plus SW AAA Puly
	NUL/NDTL Listed Solu
	FD xxxx Wp
· RECXXXAA DIGCK	· FR XXX WP
NDT Listed Conve Floatric Colltd of	Power State 54 Mo Power State 54 Mo
UL/NRTE LISTED Sanyo Electric Colltd of	• Power Slate 54 Mo
Panasonic Group Modules:	
· VBHNXXXSATP	 UL/NRTL Listed Sunt
· VBHNXXXSA1/	· SPR-E19-XXX
· VBHNXXXSA18	 SPR-E20-xxx

CONTINUED - Hyundai Modules: HiS-MxxxTI HiS-MxxxRI HiS-SxxxRI HiS-MxxxRG UL/NRTL Listed Itek Modules · IT-xxx-SE Hipro TP672M-xxx UL/NRTL Listed JA Solar Modules: · JAP6(DG) JAM6(K)-60-xxx/4BB UL/NRTL Listed Jinko Solar Modules:: · JKMxxxPP-72-DV JKMxxxPP-60-DV JKMxxxM-60HBL JKMxxxM-72HL-V JKMxxxM-72HL-TV JKMxxx-P-60 JKMxxxM-72HL4-TV UL/NRTL Listed Kyocera Modules: · KUxxxMCA → UL/NRTL Listed LG Electronics Inc. Modules: LGxxxS1C-G4 LGxxxN1C-G4 LGxxxS2WG4 LGxxxN1K-G4 LGxxxN2W-G4 LGxxxN1K-A5 LGxxxQ1C-V5 LGxxxQ1K-V5 LGxxxN2W-A5 LGxxxS2W-A5 LGxxxN2T-A5 LGxxxQ1C-A5 LGxxxQ1K-A5 LGxxxN2W-V5 LGxxxN1C-V5 LGxxxN1W-V5 LGxxxN1K-V5 LGXXXN2W-V5 LGXXXN1C-V5 LGXXXN1W-V5 LGXXXN1K-V5

LGXXXN2T-V5

LGXXXN1C-N5

LGXXXQ1C-N5

CONTINUED - LG Electronics Inc. Modules: · LGXXXO1K-N5 · LGXXXN1K-L5 · LGXXXN2W-L5 · LGXXXN2T-L5 · LGXXXN1W-L5 · LGXXXN1T-L5 · LGXXXA1C-V5 · LGXXXA1K-V5 · LGXXXM1C-N5 · LGXXXM1K-L5 · LGXXX01C-A6 · LGXXXQ1K-A6 · LGXXXQAC-A6 · LGXXXQAK-A6 · LGXXXN1C-A6 · LGXXXN1K-A6 · LGXXXN2W-E6 · LGXXXN2W-E6.AW5 · LGXXXN2T-E6 · LGXXXN1K-B6 · LGXXXQ1C-A6 · LGXXXQ1K-A6 · LGXXXQAC-A6 · LGXXXQAK-A6 · LGXXXN1C-A6 · LGXXXN1K-A6 · LGXXXN2W-E6 · LGXXXN2W-E6.AW5 · LGXXXN2T-E6 · LGXXXN1K-B6 · LGXXXA1C-A6 · LGXXXM1C-A6 · LGXXXM1K-A6 UL/NRTL Listed Longi Modules: · LR6-72-xxxM (xxx=320-350) · LR6-72HV-xxxM (xxx=320-350) · LR6-72BK-xxxM [xxx=320-350] · LR6-72PE-xxxM [xxx=340-380] · LR6-72PH-xxxM (xxx=340-380) · LR6-72PB-xxxM [xxx=340-380] · LR6-72HPB-xxxM (xxx=360-385) · LR6-60-xxxM (xxx=270-300) · LR6-60HV-xxxM (xxx=270-300) LR6-60BK-xxxM [xxx=270-300] · LR6-60PE-xxxM (xxx=280-320) · LR6-60PH-xxxM (xxx=280-320) · LR6-60PB-xxxM (xxx=280-320) · LR6-72BP-xxxM

CONTINUED - Longi Modules: · LR6-60BP-xxxM · LR6-72HBD-xxxM LR6-60-xxxM LR6-60BK-xxxM LR6-60PE-xxxM LR6-60PB-xxxM · LR6-60PH-xxxM LR6-60HPB/HIB-xxxM LR6-60HPH/HIH-xxxM LR6-72-xxxM LR6-72BK-xxxM · LR6-72HV-xxxM LR6-72PE-xxxM LR6-72PB-xxxM · LR6-72PH-xxxM LR6-72HPH/HIH-xxxM LR6-72BP-xxxM LR6-72HBD/HIBD-xxxM LR6-60BP-xxxM LR6-60HBD/HIBD-xxxM LR4-60HPH/HIH-xxxM LR4-60HPB/HIB-xxxM LR4-72HPH/HIH-xxxM LR4-72HBD/HIBD-xxxM · LR4-72HBD/HIBD-xxxM • UL/NRTL Listed Lumos Modules: LSxxxx-60M-B/C UL/NRTL Listed Luxor Solar Modules: · Lx-xxxP · Lx-xxxM UL/NRTL Listed Mission Solar Modules: MSExxxSB1J MSExxxS05T MSExxxS04J MSExxxSQ6S MSExxxS06J MSExxxSQ4S MSExxxSQ5T MSExxxSQ5K MSExxxSQ8T MSExxxSQ8K MSExxxSQ9J MSExxxSQ9S MSExxxSR8T MSExxxSR8K MSExxxSR9S

UL/NRTL Listed Sunpreme Modules: vo Electric Co Ltd of Modules: GxB-xxx GxB-xxxSM GxB-xxxSL UL/NRTL Listed Sunspark Modules: SST-275-300M SMX-250-265P SST-xxxM 60 cell SST-xxxM 72 cell eraphim Modules: SST-xxxMB 60 cell SST-XXXM3B-60/72 SST-XXXM3-60/72 SST-XXXM3B-60/72 Ifab Modules: UL/NRTL Listed S-Energy Modules: SN15-60PAE/PCE-xxxV SN10-60PAE/PBE/PCE-xxxV SN15-60MAE/MCE-xxxV SN10-60MAE/MCE-xxxV SNxxxM-10T(SN60) SN15-72PAE/PCE-xxxV SN10-72PAE/PBE/PCE-xxxV SN15-72MAE/MCE-xxxV SN10-72MAE/MBE/MCE-xxxV SN20-60MAE/MBE/MCE-xxxV SN25-60MAE/MCE-xxxV SC20-60MAE/MBE/MCE-xxxV harp Modules: SC25-60MAE/MCE-xxxV SN20-72MAE/MBE/MCE-xxxV SN25-72MAE/MCE-xxxV SC20-72MAE/MBE/MCE-xxxV olaria Modules: SC25-72MAE/MCE-xxxV -PD SD25-60BDE-xxxV -BD SD25-72BDE-xxxV -PM UL/NRTL Listed Talesun Modules Hipro TP660M-xxx plarworld Modules Hipro TP672M-xxx no UL/NRTL Listed Trina Solar Modules: · TSM-xxxDE14A TSM-xxxDD05A.08 oluxtec Modules: DUOMAX SPECS 1. PEG14 Mono Dark Series DUOMAX SPECS 2. PEG5 DUOMAX SPECS 3. PEG5.07 Mono Series DUOMAX SPECS 4. PDG5 unPower Modules: TSM-DE15H(II) TSM-DE15M(II)

· TSM-DD06M.05(II)

Compatible Modules continued

K2's CrossRail System was tested with the following:

- CONTINUED Trina Solar Modules:
- · TSM-DD06H.05(II)
- · TSM-DD06M.t5(II)
- · TSM-DD06H.T5(II)
- · TSM-PE15H
- · TSM-DEG15HC.20(II)
- · TSM-DEG15MC.20(II)
- · TSM-DEG6HC.20(II)
- · TSM-DEG6MC.20(II)
- TSM-xxxDE15V(II)TSM-xxxDE19
- TSM-xxxDEG15VC.20(II)
- · TSM-xxxDEG19C.20
- UL/NRTL Listed V Energy Modules:
- · Series 200 PV
- UL/NRTL Listed Yingli Solar Modules:
- · YL-xxxP-29b
- · YL-xxx-35b

Contents

Project overview	4
Roof 1	6
Assembly plan	8
Results	10
Structural analysis report	13
Bill of material	17

 $\left(\right)$

K2 Systems. Innovative mounting system from a strong team.

With sophisticated product innovations and a deep customer focus, K2 Systems is the engineering leader for all your mounting system needs. We are market leaders with more than 20 GW installed worldwide. Our systems are designed in our own product development department and we continually optimize and adapt mounting systems to the ever changing market.

A knowledgeable and friendly team

Just like a mountain climbing team, K2 Systems is built on mutual trust. This applies to our customer service as well as within the company itself, because we believe a trusting partnership leads to successful photovoltaic projects.

Our employees place total focus on the needs and wishes of our customer. This is true in all company departments.

Quality management and certificates

10 locations and worldwide sales network

In our international team, everyone works together to provide customers with competent, comprehensive and entirely personalized service.

This is especially true in the constant training our employees undergo with regards to product optimization, quality assurance, or innovations in construction techniques.

K2 Systems stands for outstanding quality standards, the highest quality products and sophisticated product innovations. Our customers and business partners deeply appreciate all of these factors. Independent authorities such as UL and Intertek have tested, confirmed, and certified our skills and components. External authorities are not the only ones to have put K2 Systems to the test. Our internal quality control ensures that all our products are subject to a constant review process.

These measurements all ensure the outstanding quality standards that exemplify products from K2 Systems. All our products are German engineered but tailored for the US and Mexico markets. Our customers can rely on our high quality and appreciate the fact that we offer a 25-year product warranty on all our components.

Product guarantee

K2 Systems offers a 25-year product warranty on all products in its portfolio. The use of high quality materials and a three-level quality inspection ensures these standards.

In a nutshell

As roof-top specialists, we offer effective and economical solutions for roofs all around the world and provide professional, fast and reliable support for our customers in the solar industry.

I Connecting StrengthProject overview

Roofs

Roof	System	Module	Height	Quantity	Total power
Roof 1 Composite Shingles	Shared Rail	TSM-415NE09RC.05 69×45×1 in 415 Wp	10.0 ft	14	5.81 kWp
Total				14	5.81 kWp
Project informati	on				
Address	718 Remingt	ton St, Fort Collins, CO 80	524, USA		
Customer	Jordan Wisv	well			

Load settings

Design method	ASCE 7-16
Snow load on ground level	35.00 psf
Risk Category	II - Normal
Wind speed	140.0 mph

Material values

Aluminium EM-AW 6063 (EP, ET, ER/B) T66

Elastic module	Е	= 70.000 N/mm ²
Shear module	G	= 26.923 N/mm ²
Density	g	= 2.700 kg/m³
Thermal coefficient	α	= 2.3e-⁵
Yielding strength	$\mathbf{f}_{o,k}$	= 200 N/mm ²
Ultimate strength	$\mathbf{f}_{u,k}$	= 245 N/mm²

THE PROJECT IS VERIFIED.

The selected mounting system can be installed as planned. Thank you for choosing a K2 mounting system.

Project information

Address Customer Author 718 Remington St, Fort Collins, CO 80524, USA Jordan Wiswell Andrew Lyle $\left\{ \right\}$

I Connecting StrengthRoofs | Roof 1 | Assembly plan

Base Rails

Whole Rails		Rail cutting				
Туре	Total Rail Length	Quantity 13.83 ft	Part of Rail	Length	Rest	
3*A	26.021 ft	1*13.83 ft	13.833	12.188 from 13.833		1.612

1 cm is viewed as lost for each cutting

Red numbers are leftover rails which will not be used any longer

Fastener Spacing

Module	Array	Distance	maximum cantilever length	maximum fastener spacing
1	Edge (2")	2.79 ft	1.358	2.802
1	Center (1)	2.79 ft	1.358	2.802
1	Edge (2)	2.79 ft	1.358	2.802
1	Corner (3")	2.79 ft	1.358	2.802
1	Corner (3)	2.79 ft	1.358	2.802
1	Edge (2") (exposed)	2.79 ft	1.358	2.802
1	Center (1) (exposed)	2.79 ft	1.358	2.802
1	Edge (2) (exposed)	2.79 ft	1.358	2.802
1	Corner (3") (exposed)	2.79 ft	1.358	2.802

Module arrays

Module array	Width[ft]	Length[ft]	Width in modules	Length in modules
1	7.93	3.54	7	2

Connecting StrengthRoofs | Roof 1 | Module array 1

íì

íì

(N)

Roof	System	Module	Height	Quantity	Total power
Roof 1 Composite Shingles	<u>Shared Rail</u>	TSM-415NE09RC.05 69×45×1 in 415 Wp	10.0 ft	14	5.81 kWp

Module

Name	TSM-415NE09RC.05
Manufacturer	Trina
Output power	415 Wp
Dimensions	69×45×1 in
Weight	47.0 lbm

Components

Fastener	EverFlash eComp+SRS Slide Kit, Mill
Base rails	48-X

Loads on modules (module dimensioning)

Arrow	∆_Tr∆ .	ul	ultimate state [psf]			S	serviceability [psf]			
Апау	[ft ²]	Pressure ⊥	Pressure II	Uplift ⊥	Uplift II	Pressure ⊥	Pressure II	Uplift ⊥	Uplift II	
Edge (2")	21.49	32.2	4.0	-9.2	0.2	32.2	4.0	-9.2	0.2	
Center (1)	21.49	32.2	4.0	-6.0	0.2	32.2	4.0	-6.0	0.2	
Edge (2)	21.49	32.2	4.0	-7.2	0.2	32.2	4.0	-7.2	0.2	
Corner (3")	21.49	32.2	4.0	-14.0	0.2	32.2	4.0	-14.0	0.2	
Corner (3)	21.49	32.2	4.0	-9.5	0.2	32.2	4.0	-9.5	0.2	
Edge (2") (exposed)	21.49	32.2	4.0	-14.6	0.2	32.2	4.0	-14.6	0.2	
Center (1) (exposed)	21.49	32.2	4.0	-9.8	0.2	32.2	4.0	-9.8	0.2	
Edge (2) (exposed)	21.49	32.2	4.0	-11.5	0.2	32.2	4.0	-11.5	0.2	
Corner (3'') (exposed)	21.49	32.2	4.0	-21.7	0.2	32.2	4.0	-21.7	0.2	

Connecting StrengthResults | Roof 1

Utilization result

		loa 	ad-bearin capacity	ng	Usab.	Distan	Ces	maxim	um values
Nc	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module	Array	σ[%]	σ[%]	F[%]	f[%]	[ft]	[ft]	L _{max} [ft]	Fst D _{max} [ft]
1	Edge (2")	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Center (1)	38.6	3.4	99.6	29.1	2.792		1.358	2.802
1	Edge (2)	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Corner (3")	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Corner (3)	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Edge (2") (exposed)	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Center (1) (exposed)	38.6	6.7	99.6	29.1	2.792		1.358	2.802
1	Edge (2) (exposed)	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Corner (3") (exposed)	38.6	0.0	99.6	29.1	2.792		1.358	2.802
Pr	Profile			Fst D _{max}	maximum 1	fastene	r spacing	ł	
Fst	Fastener			BR	base rail				
σ	Stress			Usab.	usability				
f	deflection			CL	Cantilever				
F	Force								
CL/L _{max}	maximum cantilever length	I							

Array Layout

Array	Rows	Columns	Length	Width	Orientation	Total Weight	Racking Weight	Distributed Weight
1	2	7	312.26 in	139.47 in	Portrait	733.44 lbm	75.44 lbm	2.413 psf

Notes

- Ensure rail connectors do not interfere with L-feet or roof attachments. Additional fastners and/or repositioning of their locations may be required.
- The structure was statically verified in accordance with Eurocode 9: Design of aluminum structures (DIN EN 1999-1-1:2021) and offers sufficient load-bearing capacity and stability for the loads specified in the chapter 'Maximum actions on the components'.
- Adjustment factor for wind load regarding servise life periond, fW, is according to DIN EN 1991-1-4/ NA, NDP for 4.2 (2P) note 5, table 3
- Adjustment factor for snow load regarding servise life periond, fS, is according to DIN EN 1991-1-3/ annex D, table 4
- Before installation, Contractor must verify that the system meets all applicable laws, regulations, ordinances, and codes. Contractor shall verify that the roof or other structures to which the system is being attached are capable of carrying the system loads.

Connecting Strength Structural analysis report | Roof 1

General information

Name	Wiswell Pergola
Mounting System	Shared Rail

Location information

Address	718 Remington St, Fort Collins, CO 80524, USA
Ground level	4,989.8 ft

Roof information

Building height	10.0 ft
Roof type	Monopitch roof
Roof pitch	7°
min. roof edge distance	0.83 ft
Rafter spacing	2.792 ft
Set rafter to left edge	No
Rafter spacing left	13.8 in
Set rafter to right edge	No
Rafter spacing right	13.8 in

Loads

Design method	ASCE 7-16
8	

Wind load

Wind speed	۷	= 140.0 mph
Hurricane prone	No	
Manual Topographic Factor approved	\mathbf{K}_{zt}	= 1.0
by Engineer of Record		

I Connecting Strength Structural analysis report | Roof 1

Array	load impact area [ft²]	maxCpe _{21.4} 9	minCpe _{21.4} 9	wind pressure [psf]	wind uplift [psf]
Edge (2")	21.49	0.267	-1.567	3.030	-17.795
Center (1)	21.49	0.267	-1.100	3.030	-12.493
Edge (2)	21.49	0.267	-1.267	3.030	-14.387
Corner (3")	21.49	0.267	-2.268	3.030	-25.755
Corner (3)	21.49	0.267	-1.601	3.030	-18.179
Edge (2") (exposed)	21.49	0.267	-1.567	4.545	-26.692
Center (1) (exposed)	21.49	0.267	-1.100	4.545	-18.740
Edge (2) (exposed)	21.49	0.267	-1.267	4.545	-21.581
Corner (3") (exposed)	21.49	0.267	-2.268	4.545	-38.633

Snow load

Snow Load on Flat Roofs	\mathbf{p}_{f}	= 24.50 psf
ExposureFactor	\mathbf{C}_{e}	= 1.00
Reduction Factor		= 0.99
Slope Factor	\mathbf{C}_{s}	= 1.00
ThermalFactor	\mathbf{C}_{t}	= 1.00
Snow load on ground level	$\mathbf{S}_{\mathbf{k}}$	= 35.000 psf
Snow load on roof	S _i	= 30.000 psf
Environment	Par	tially exposed

Dead Load

Weight of module	\mathbf{G}_{M}	= 47.0 lbm
Weight of mounting system per module		= 5.5 lbm
Module area	$\mathbf{A}_{\mathbf{M}}$	= 21.49 ft ²

Structural analysis report | Roof 1

Maximum load on modules (Mounting system dimensioning)

Arrow	Λ TrΛ	ultimate state [psf]					serviceability [psf]				
Allay	[ft ²]	Pressure ⊥	Pressure II	Uplift ⊥	Uplift II	Pr	ressure ⊥	Pressure II	Uplift ⊥	Uplift II	
Edge (2")	21.49	32.201	3.954	-9.222	0.179	÷	32.201	3.954	-9.222	0.179	
Center (1)	21.49	32.201	3.954	-6.041	0.179		32.201	3.954	-6.041	0.179	
Edge (2)	21.49	32.201	3.954	-7.178	0.179	÷	32.201	3.954	-7.178	0.179	
Corner (3")	21.49	32.201	3.954	-13.998	0.179		32.201	3.954	-13.998	0.179	
Corner (3)	21.49	32.201	3.954	-9.452	0.179	÷	32.201	3.954	-9.452	0.179	
Edge (2") (exposed)	21.49	32.201	3.954	-14.560	0.179	:	32.201	3.954	-14.560	0.179	
Center (1) (exposed)	21.49	32.201	3.954	-9.789	0.179	:	32.201	3.954	-9.789	0.179	
Edge (2) (exposed)	21.49	32.201	3.954	-11.494	0.179	÷	32.201	3.954	-11.494	0.179	
Corner (3") (exposed)	21.49	32.201	3.954	-21.725	0.179	;	32.201	3.954	-21.725	0.179	

Max. load on fastener

Arrow	∧_Tr∧ .	ultimate state [lbf]					serviceability [lbf]				
[ft ²]	Pressure ⊥	Pressure II	Uplift ⊥	Uplift II	Pres	ssure L	Pressure II	Uplift ⊥	Uplift II		
Edge (2")	21.49	577.397	70.895	-165.358	3.203	577	7.397	70.895	-165.358	3.203	
Center (1)	21.49	577.397	70.895	-108.323	3.203	577	7.397	70.895	-108.323	3.203	
Edge (2)	21.49	577.397	70.895	-128.700	3.203	577	7.397	70.895	-128.700	3.203	
Corner (3")	21.49	577.397	70.895	-251.002	3.203	577	7.397	70.895	-251.002	3.203	
Corner (3)	21.49	577.397	70.895	-169.492	3.203	577	7.397	70.895	-169.492	3.203	
Edge (2") (exposed)	21.49	577.397	70.895	-261.080	3.203	577	7.397	70.895	-261.080	3.203	
Center (1) (exposed)	21.49	577.397	70.895	-175.528	3.203	577	7.397	70.895	-175.528	3.203	
Edge (2) (exposed)	21.49	577.397	70.895	-206.094	3.203	577	7.397	70.895	-206.094	3.203	
Corner (3") (exposed)	21.49	577.397	70.895	-389.546	3.203	577	7.397	70.895	-389.546	3.203	

Resistance Values of Components

Base Rails

Base Rails	A	ا _ي	ا _ء	W _y	W _z
	[cm²]	[cm^4]	[cm^4]	[cm ³]	[cm ³]
48-X	3.097	0.14	0.19	0.20	0.15

Connecting Strength Structural analysis report | Roof 1

Fastener

Fastener	R _{D,Uplift,Perpendicular} [lbf]	R _{D,Pressure,Perpendicular} [lbf]	R _{D,Pressure,Parallel} [lbf]
EverFlash eComp+SRS Slide Kit, Mill	715.00	705.00	400.00

Utilization result

		load-bearing capacity		Usab.	Distances		maxim	maximum values	
No.	roof areas	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Module Array		σ[%]	σ[%]	F[%]	f[%]	[ft]	[ft]	L _{max} [ft]	Fst D _{max} [ft]
1	Edge (2")	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Center (1)	38.6	3.4	99.6	29.1	2.792		1.358	2.802
1	Edge (2)	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Corner (3")	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Corner (3)	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Edge (2") (exposed)	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Center (1) (exposed)	38.6	6.7	99.6	29.1	2.792		1.358	2.802
1	Edge (2) (exposed)	38.6	0.0	99.6	29.1	2.792		1.358	2.802
1	Corner (3") (exposed)	38.6	0.0	99.6	29.1	2.792		1.358	2.802

- Fst Fastener
- σ Stress
- f deflection
- F Force
- CL/L_{max} % maximum cantilever length

Fst D_{max} maximum fastener spacing

BR	base rail
Usab.	usability

CL Cantilever
I Connecting StrengthBill of material

Position	ltem no.	Item description	Quantity	Weight
1	4000663	CrossRail 48-X 166", Dark	6	47.1 lbm
2	4000386	RailConn CR 48-X,48-XL Struct Set, Dark	3	1.5 lbm
3	4000015	EverFlash eComp+SRS Slide Kit, Mill	30	22.5 lbm
4	4000689-H	CR MC Dark, 48-50mm, Shared RL 30-47mm, 13mm Hex	26	4.5 lbm
5	4000093	CR EC Dark, 40-47mm, Shared RL 30-40mm	4	0.7 lbm
6	4000609	Shared Rail Clamp Add-On, Slide In, 10mm	26	1.2 lbm
7	4005394	Wire Management Clip, Omega, Black	14	0.1 lbm
8	4000069	Wire Management Clip, TC	28	0.3 lbm
9	4000431	CrossRail Flat EndCap, CR 48-X,48-XL	6	0.1 lbm
10	4000006-H	K2 Ground Lug, 13mm Hex Set	1	0.2 lbm
Total				78.2 lbm

 $\langle \rangle$

Thank you for choosing a K2 mounting system.

Systems from K2 Systems are quick and easy to install. We hope these instructions have helped. Please contact us with any questions or suggestions for improvement.

Our contact data:

k2-systems.com/en/contact

Our General Terms of Business apply. Please refer to <u>k2-systems.com</u>

K2 Systems LLC

4665 North Avenue Suite I Oceanside, CA 92056 USA +1 760-301-5300 info-us@k2-systems.com k2-systems.com/en-US

04/15/2024

REFERENCE: 718 Remington Street, Fort Collins, CO 80524

To Whom It May Concern:

The following calculations are for the structural engineering design of the PV racking system and attachment and are valid only for the structural information referenced in the stamped plan set. The verification of such info is the responsibility of others. All PV mounting equipment shall be designed and installed per manufacturer's approved installation specifications.

Limitations

Installation of the solar panels must be performed in accordance with manufacturer recommendations. All work performed must be in accordance with accepted industry-wide methods and applicable safety standards. The contractor shall notify AHZ Consulting Engineers, Inc. should any damage, deterioration or discrepancies between the as-built condition of the structure and the condition described in this letter be found. The use of solar panel support span tables provided by others is allowed only where the building type, site conditions, site-specific design parameters, and solar panel configuration match the description of the span tables. The design of the solar panel racking (mounts, ballast, rails, etc.) and electrical engineering are out of the scope of this work. Waterproofing around the roof penetrations is the responsibility of the install contractor. AHZ Consulting Engineers, Inc. assumes no responsibility for improper installation of the solar array.

The evaluation of the connectors was performed and is only valid for Simpson Strong-Tie[®] products as referenced on the stamped plans and listed on <u>https://www.strongtie.com/</u>.

If you have any questions, don't hesitate to contact.

Sincerely, Arash Zandieh, Ph.D., P.E. a.zandieh@ahzengineers.com | 901-692-0431 AHZ Consulting Engineers, Inc.

Arash Zandieh 2024.04.15 18: 15:30-04'00'

Design Codes and Guidelines:

- 1. ASCE (2016). "Minimum Design Loads for Buildings and Other Structures. ASCE/SEI Standard 7-16."
- 2. 2021 International Building Code (IBC)
- 3. ACI 318-19

Design parameters:

Risk Category: II Design wind speed: 107 mph Wind exposure category: C Ground snow load: 35 psf Building height: 10 ft Seismic Design Category: D Seismic Importance Factor: 1.0 S₅: 0.194g, S₁: 0.056g Soil Site Class: D-Default Soil S_{DS}: 0.207g, S_{D1}: 0.090g

Solar Module:

	BVM7612M-540-H-HC-BF		
	Length	7.47	ft
	Width	3.72	ft
	Weight	61.73	lbs
Weight of PV panels:			
	W _{PV} =	4.00	psf

Wind Load on Pergola:

Basic Wind Speed:	V	107	mph
Exposure Category:	С		
Risk Category:	П		
PV Module Angle:	θ	0	degree
Building Roof Height:	h	10	ft
Velocity Pressure Exposure Coefficient:	Kz	0.85	ASCE 7-16, Table 26.10.1
Topographic Factor:	K _{zt}	1	ASCE 7-16, Section 26.8.2
Wind Directionality Factor:	K _d	0.85	ASCE 7-16, Table 26.6.1
ground elevation factor	Ke	1	ASCE 7-16, Section 26.9
Velocity pressure $q_z = 0.00256 K_z K_{zt} K_d V^2$:	21.2	psf	(Conservative) ASCE 7-16, Equation 26.10-1

We use two approaches to calculate the wind pressure on solar panels:

1) using ASCE 7-16, Section 29.4.4

2) using ASCE 7-16, Section 30.3.2

We will use the maximum wind pressure from two approaches for design.

Approach 1: ASCE 7-16 Section 29.4.4

$p=q_h(GC_p)(\gamma_E)(\gamma_a)$			ASCE 7- 29.4-7	16, Equa	ation
γa	0.8		ASCE 7- (Conser	16, Figu vative)	re 9.4.8
γε	1.5		Assu	ime Expo	osed
GC _p :			ASCE 30.3.2A	7-16,	Figure
External pressure coefficient Zone 1':	GC_p	0.9			

AH2 111 Irvi (94 CONSULTING ENGINEERS INC.	AHZ Consulting Engineers, Inc. 111 Rodeo Irvine, CA 92602 (949) 466-1544			Date: 04/15/2024 Job Code: 718 Remington Stree Page 4 of 5 3		
External pressure coefficient Z	one 1:	GC_{ρ}	1.7			
External pressure coefficient Z	one 2:	GC_p	2.3			
External pressure coefficient Z	one 3:	GC_p	3.2			
External pressure coefficient (down	ward):	GC_p	0.3			
<u>Use <i>GC</i></u> for 2	<u>Zone 2</u>					
Minimum Design Wind Pressure	5	16	psf	ASCE 7-16, Section 30.2.2		
Unlift Wind load on mo	dulas	58/	nsf	>16 pcf OK		
Downward Wind load on mo	dules:	7.6	psf	<16 psf ; Use 16 psf		
Approach 2: ASCE 7-16, Section	<u>30.2.2</u>					
Design Wind Pressure $p = q_z$ (GC)	o-GC _{pi})			ASCE 7-16, Equation 30.3-1		
Internal pressure coeff	icient:	GC _{pi}	0.18	ASCE 7-16, Table 26.13-1		
	GC			ASCE 7-16, Figure		
External pressure coefficient Zo	one 1':	GCn	0.9	30.3.2A		
External pressure coefficient Z	one 1:	GC _n	1.7			
External pressure coefficient Z	one 2:	GC₀	2.3			
External pressure coefficient Z	one 3:	GCp	3.2			
External pressure coefficient (down	ward):	GCp	0.3			
<u>Use GC_p for Z</u>	<u>,</u> Zone 2	r				
Minimum Design Wind Pressure	S	16	psf	ASCE 7-16, Section 30.2.2		

Members Design:

The pergola elements are modeled using FORTE software, and the results are provided in Appendix 1. Conservatively, a maximum uniform load of 4 psf is assumed for the PV system.

Design Loads:

Dead Load= 4 psf Snow= 30 psf Wind Uplift= -52.5 psf Wind Downward= 16 psf

Members:

4X12, Tributary width= 2'-9 ½", Length= 15' 7 ½", Cantilever= 2' 2 ¾" 6X12, Tributary width 7'-9 ¾", Length= 15' 7 ½", Cantilever= 1' 1 ¼" 6X6 Post, Tributary area= 105 psf, Length= 9' ¼"

Additional load for 4X12= 5 psf, and for 6X12= 1.5 psf.

Attachment Check:

LSSR410Z Simpson Strong-Tie Connector:

The LSSR410Z Simpson Strong-Tie Connector are used for connecting 4X12 to 6X12. The structural output for LSSR410Z Simpson Strong-Tie Connector is given in Appendix 2. The allowable uplift is given in Appendix 2:

• Allowable Uplift Capacity: 695 lbs

The maximum uplift load (487 lbs) calculated at attachments are below the allowable values.

APT8 Simpson Strong-Tie Connector:

Edge Posts:

(1) APT8 Simpson Strong-Tie Connector are used for connecting 6X12 to the edge 6X6 posts. The structural output for APT8 Simpson Strong-Tie Connector is given in Appendix 3. The allowable uplift is given in Appendix 3:

• Allowable Uplift Capacity: 2130 lbs

The maximum uplift load (1421 lbs) calculated at attachments are below the allowable values.

Middle Posts:

(2) APT8 Simpson Strong-Tie Connector are used for connecting 6X12 to the middle 6X6 posts. The structural output for APT8 Simpson Strong-Tie Connector is given in Appendix 3. The allowable uplift is given in Appendix 3:

• Allowable Uplift Capacity: 2X2130 lbs = 4260

The maximum uplift load (3173 lbs) calculated at attachments are below the allowable values.

MPBZ[™] Moment Post Base Simpson Strong-Tie:

The MPBZ[™] Moment Post Base are used for connecting 6X6 posts to the foundation. The structural output for MPBZ[™] Moment Post Base is given in Appendix 4. The allowable uplift is given in Appendix 4:

• Allowable Uplift Capacity: 5815 lbs

The maximum uplift load (2940 lbs) calculated at attachments are below the allowable values.

Foundation Design:

Load Combinations:

Loads are calculated for soil bearing, overturning, and sliding checks using the following ASD load combinations: Combination 1: D Combination 2: D + S Combination 3: D + 0.75S Combination 4: D + (0.6W or 0.7E)Combination 5: D + 0.75L + 0.75(0.6W) + 0.75S Combination 6 : D + 0.75L ± 0.75(0.7E) + 0.75S Combination 7 : 0.6D + (0.6W or 0.7E) Loads are calculated for footing and anchor bolts structural design using the following SD load combinations: Combination 1: 1.4D Combination 2: 1.2D + 0.5S Combination 3: 1.2D + 1.6S + 0.5W Combination 4: 1.2D + 1.0W + 0.5S Combination 5: 1.2D + 1.0E + 0.2S Combination 6: 0.9D + 1.0W Combination 7: 0.9D + 1.0E Where D = dead load S = snow loadW = wind load E = earthquake (seismic load)

Design Summary:

Computer software ENERCALC was used to design foundation. The 3'-6" x 3'-6" x 1'-0" (W x L x H) concrete footing, with f'c = 3,000 psi, is needed. Furthermore, the concrete column with 1'-4" x 1'-4" x 2'-0" (W x L x H) dimensions and f'c = 3,000 psi is used on the top of the footing. Appendix 5 shows the ENERCALC design report.

Computer program Simpson Strong-Tie was used to design the anchors. Appendix 6 shows the Simpson Strong-Tie design report.

Use (3) 1/2" Machine Bolt per pad, (3) total with minimum 2.35" embedment in concrete. The concrete slab must be minimum of 10" thick and must provide at least 1 ft edge distance for each anchor.

Structural design of the slab and its impact on the building framing is responsivity of others. Special inspection is required for installation of the Strong-Bolt[®] 2 post-installed anchors.

Date: 04/15/2024 Job Code: 718 Remington Street Page **8** of **57**

Appendix 1

FORTE Results

FORTEWEB

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	Member Length : 10' 9 3/8
Member Reaction (lbs)	64 @ 3 1/2"	3281 (1.50")	Passed (2%)		1.0 D (All Spans)	System : Roof
Shear (lbs)	381 @ 1' 2 11/16"	7560	Passed (5%)	1.60	0.6 D + 0.6 W (All Spans)	Member Type : Joist Building Lice : Posidential
Moment (Ft-lbs)	-1221 @ 5' 7"	10564	Passed (12%)	1.60	0.6 D + 0.6 W (All Spans)	Building Code : IBC 2018
Live Load Defl. (in)	0.000 @ 3 1/2"	0.533	Passed (L/999+)		1.0 D (All Spans)	Design Methodology : ASD
Total Load Defl. (in)	-0.038 @ 5' 7"	0.711	Passed (L/999+)		0.6 D + 0.6 W (All Spans)	Member Pitch : 1.5/12

• Deflection criteria: LL (L/240) and TL (L/180).

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

. A 5.7% decrease in the moment capacity has been added to account for lateral stability.

-487 lbs uplift at support located at 3 1/2". Strapping or other restraint may be required.

-487 lbs uplift at support located at 10° 10 1/2°. Strapping or other restraint may be required.
 Applicable calculations are based on NDS.

	Bearing Length			Loads	to Suppor		
Supports	Total	Available	Required	Dead	Wind	Factored	Accessories
1 - Hanger on 11 1/4" DF beam	3.50"	Hanger ¹	1.50"	67	-879	67/-487	See note 1
2 - Hanger on 11 1/4" DF beam	3.50"	Hanger ¹	1.50"	67	-879	67/-487	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• 1 See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' o/c	
Bottom Edge (Lu)	All Bearing Points	

Connector: Simpson Strong-Tie									
Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories				
LSSR410Z	1.88"	N/A	22-16dx2.5	18-16dx2.5					
LSSR410Z	1.88"	N/A	22-16dx2.5	18-16dx2.5					
	Model LSSR410Z LSSR410Z	Model Seat Length LSSR410Z 1.88" LSSR410Z 1.88"	Model Seat Length Top Fasteners LSSR410Z 1.88" N/A LSSR410Z 1.88" N/A	Model Seat Length Top Fasteners Face Fasteners LSSR410Z 1.88" N/A 22-16dx2.5 LSSR410Z 1.88" N/A 22-16dx2.5	Model Seat Length Top Fasteners Face Fasteners Member Fasteners LSSR4102 1.88" N/A 22-16dx2.5 18-16dx2.5 LSSR4102 1.88" N/A 22-16dx2.5 18-16dx2.5				

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Wind (1.60)	Comments
1 - Uniform (PLF)	0 to 11' 2"	N/A	12.0	-157.5	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
AHZ Consulting Engineers Inc.		Α
		Weyerhaeuse

4/14/2024 6:52:08 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Pergola- 718 Remington Street Page 1/1

Date: 04/15/2024 Job Code: 718 Remington Street Page **10** of **57**

SOLUTIONS REPORT PASSED Level, 4X12-Uplift- rev01 Current Solution: 1 piece(s) 4 x 12 DF No.2 @ 12" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	Member
Member Reaction (lbs)	64 @ 3 1/2"	3281 (1.50")	Passed (2%)		1.0 D (All Spans)	System :
Shear (lbs)	381 @ 1' 2 11/16"	7560	Passed (5%)	1.60	0.6 D + 0.6 W (All Spans)	Building
Moment (Ft-lbs)	-1221 @ 5' 7"	10564	Passed (12%)	1.60	0.6 D + 0.6 W (All Spans)	Building
Live Load Defl. (in)	0.000 @ 3 1/2"	0.533	Passed (L/999+)		1.0 D (All Spans)	Design N
Total Load Defl. (in)	-0.038 @ 5' 7"	0.711	Passed (L/999+)		0.6 D + 0.6 W (All Spans)	Member

Member Length : 10' 9 3/8" System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 1.5/12

All Product Solutions							
Depth	Series	Plies	Spacing	Cost Index			
5 1/2"	1 3/4" 1.55E TimberStrand® LSL	1	24"	0.62 *			
11 1/4"	4 x DF No.2	1	12"	5.25			

The purpose of this report is for product comparison only. Load and support information necessary for professional design review is not displayed here. Please print an individual Member Report for submittal purposes.

ForteWEB Software Operator	Job Notes	
AHZ Consulting Engineers Inc.		
		Weyerhaeuse

4/14/2024 6:51:47 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Pergola- 718 Remington Street Page 1 / 1

Date: 04/15/2024 Job Code: 718 Remington Street Page **11** of **57**

FORTEWEB^{ULL DETAIL REPORT Level, 4X12-Uplift- rev01} 1 piece(s) 4 x 12 DF No.2 @ 12" OC

PASSED

Summary of Loads to Supports

All load groups / combinations / patterns			
		10' 7"	
Maximum Down (lbs) / LDF	67/0.90		67/0.90
Critical Down (Ibs) / LDF	67/0.90		67/0.90
Maximum Uplift (Ibs) / LDF	-487/1.60	-	-487/1.60
Critical Uplift (Ibs) / LDF	-487/1.60	-	-487/1.60
Bearing Length	Hanger	-	Hanger
Support Fc-perp (psi)	625		625
Top edge required unbraced length / C_L	N/A	60.00"/0.9902	N/A
Bottom edge required unbraced length / CL	N/A	127.99"/0.9426	N/A

1.0 Dead (LDF = 0.9)

Loading On All Spans					
			10' 7"		1
Member Reaction (lbs)	6	4		e	64
Loads to Supports (lbs)	6	7		6	57
Shear used for design (lbs)	N/A	53		-53	N/A
Shear at support node (lbs)	N/A	64		-64	N/A
Shear at span point load (lbs)	-	-	N/A		-
Moment (Ft-lbs)		-	169) 3	
Live Load Deflection (in)	-	_	0.000"		-
Total Load Deflection (in)	-	-	0.005"		23

1.0 Dead + 0.6 Wind (LDF = 1.6)

Loading On All Spans					
			10' 7"		
Member Reaction (lbs)	-4	36		-4	36
Loads to Supports (lbs)	-4	60		-4	60
Shear used for design (lbs)	N/A	-359		359	N/A
Shear at support node (lbs)	N/A	-436		436	N/A
Shear at span point load (lbs)			N/A	A	
Moment (Ft-lbs)			-1154		-
Live Load Deflection (in)			-0.041"		-
Total Load Deflection (in)			-0.036"		-

0.6 Dead + 0.6 Wind (LDF = 1.6)

Loading On All Spans					
			10' 7"		1
Member Reaction (lbs)	-4	162		-4	62
Loads to Supports (lbs)	-4	187		-4	87
Shear used for design (lbs)	N/A	-381		381	N/A
Shear at support node (lbs)	N/A	-462		462	N/A
Shear at span point load (lbs)					
Moment (Ft-lbs)			-1221		
Live Load Deflection (in)			-0.041"		-
Total Load Deflection (in)		4	-0.038"		

Date: 04/15/2024 Job Code: 718 Remington Street Page **12** of **57**

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Roof (LDF = 1.6)

Loading On All Spans					
		4	10' 7"		1
Member Reaction (lbs)	-3	11		-3	11
Loads to Supports (lbs)	-3	28		-3	28
Shear used for design (lbs)	N/A	-256		256	N/A
Shear at support node (lbs)	N/A	-311		311	N/A
Shear at span point load (lbs)	-	-	N/A) ÷	
Moment (Ft-lbs)	-		-823		
Live Load Deflection (in)	-	-	-0.031"	-	
Total Load Deflection (in)		-	-0.025"		

ForteWEB v3.7, Design Engine Version V8.4.0.40

04/14/2024 2:52:07 PM

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	Member Length :
Member Reaction (lbs)	540 @ 3 1/2"	3281 (1.50")	Passed (16%)		1.0 D + 1.0 S (All Spans)	System : Roof
Shear (lbs)	445 @ 1' 2 11/16"	5434	Passed (8%)	1.15	1.0 D + 1.0 S (All Spans)	Member Type : Jo Building Lice : Po
Moment (Ft-lbs)	1429 @ 5' 7"	7949	Passed (18%)	1.15	1.0 D + 1.0 S (All Spans)	Building Code : It
Live Load Defl. (in)	0.039 @ 5' 7"	0.533	Passed (L/999+)		1.0 D + 1.0 S (All Spans)	Design Methodolo
Total Load Defl. (in)	0.044 @ 5' 7"	0.711	Passed (L/999+)		1.0 D + 1.0 S (All Spans)	Member Pitch : 1

0' 9 3/8" Iential 2018 y : ASD /12

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• A 1.3% decrease in the moment capacity has been added to account for lateral stability.

Applicable calculations are based on NDS.

	Bearing Length							
Supports	Total	Available	Required	Dead	Snow	Wind	Factored	Accessories
1 - Hanger on 11 1/4" DF beam	3.50"	Hanger ¹	1.50"	67	503	268	570	See note 1
2 - Hanger on 11 1/4" DF beam	3.50"	Hanger ¹	1.50"	67	503	268	570	See note 1

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' o/c	
Bottom Edge (Lu)	All Bearing Points	

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
1 - Face Mount Hanger	LSSR410Z	1.88"	N/A	22-16dx2.5	18-16dx2.5				
2 - Face Mount Hanger	LSSR410Z	1.88"	N/A	22-16dx2.5	18-16dx2.5				

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Snow (1.15)	Wind (1.60)	Comments
1 - Uniform (PLF)	0 to 11' 2"	N/A	12.0	90.0	48.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Block) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by tic: Software. Products manufactured at and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
AHZ Consulting Engineers Inc.		
		Weyerhaeuse

4/14/2024 9:03:42 PM UTC ForteWEB v3.7, Engine: V8.4.0.40, Data: V8.1.5.0 File Name: Pergola- 718 Remington Street Page 1/1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	Member Length : 10' 9 3/8
Member Reaction (lbs)	540 @ 3 1/2"	3281 (1.50")	Passed (16%)		1.0 D + 1.0 S (All Spans)	System : Roof
Shear (lbs)	445 @ 1' 2 11/16"	5434	Passed (8%)	1.15	1.0 D + 1.0 S (All Spans)	Member Type : Joist Building Use : Pesidential
Moment (Ft-lbs)	1429 @ 5' 7"	7949	Passed (18%)	1.15	1.0 D + 1.0 S (All Spans)	Building Code : IBC 2018
Live Load Defl. (in)	0.039 @ 5' 7"	0.533	Passed (L/999+)		1.0 D + 1.0 S (All Spans)	Design Methodology : ASD
Total Load Defl. (in)	0.044 @ 5' 7"	0.711	Passed (L/999+)		1.0 D + 1.0 S (All Spans)	Member Pitch : 1.5/12

All Product Solutions				
Depth	Series	Plies	Spacing	Cost Index
7 1/4"	1 3/4" 1.55E TimberStrand® LSL	1	24"	0.82 *
11 1/4"	4 x DF No.2	1	12"	5.25

The purpose of this report is for product comparison only. Load and support information necessary for professional design review is not displayed here. Please print an individual Member Report for submittal purposes.

ForteWEB Software Operator	Job Notes	
AHZ Consulting Engineers Inc.		
		Weyerhaeuser

Date: 04/15/2024 Job Code: 718 Remington Street Page **15** of **57**

FULL DETAIL REPORT Level, 4X12-Downward- rev01 1 piece(s) 4 x 12 DF No.2 @ 12" OC

PASSED

Summary of Loads to Supports

All load groups / combinations / patterns			
		10' 7"	
Maximum Down (lbs) / LDF	570/1.15		570/1.15
Critical Down (lbs) / LDF	570/1.15		570/1.15
Maximum Uplift (Ibs) / LDF	0/1.00	-	0/1.00
Critical Uplift (lbs) / LDF	0/1.00	-	0/1.00
Bearing Length	Hanger	(100)	Hanger
Support Fc-perp (psi)	625		625
Top edge required unbraced length / C_L	N/A	60.00"/0.9868	N/A
Bottom edge required unbraced length / CL	N/A	N/A	N/A

1.0 Dead (LDF = 0.9)

Loading On All Spans					
			10' 7"		1
Member Reaction (lbs)	6	4			64
Loads to Supports (lbs)	6	7		6	67
Shear used for design (lbs)	N/A	53		-53	N/A
Shear at support node (lbs)	N/A	64		-64	N/A
Shear at span point load (lbs)	4	-	N/A		-0
Moment (Ft-lbs)		-	169	1	
Live Load Deflection (in)	-	-	0.000"		
Total Load Deflection (in)		-	0.005"	. 3	

1.0 Dead + 0.75 Floor + 0.75 Snow (LDF = 1.15)

Loading On All Spans					
			10' 7"		
Member Reaction (lbs)	4	21		42	21
Loads to Supports (lbs)	4	44		44	14
Shear used for design (lbs)	N/A	347		-347	N/A
Shear at support node (lbs)	N/A	421		-421	N/A
Shear at span point load (lbs)		-	N/A	-	
Moment (Ft-lbs)		-	1114	-	
Live Load Deflection (in)		-	0.029"	-	- :
Total Load Deflection (in)		-	0.034"	-	4

1.0 Dead + 0.6 Wind (LDF = 1.6)

oading On All Spans					
			10' 7"		
Member Reaction (lbs)	2	16	0.775	21	16
Loads to Supports (lbs)	228			22	28
Shear used for design (lbs)	N/A	178		-178	N/A
Shear at support node (lbs)	N/A	216	-	-216	N/A
Shear at span point load (lbs)	· · · · · · · · · · · · · · · · · · ·		N/A		-
Moment (Ft-lbs)			573	-	-
Live Load Deflection (in)			0.012"	-	
Total Load Deflection (in)		-	0.018"		-

0.6 Dead + 0.6 Wind (LDF = 1.6)

Loading On All Spans			
		10' 7"	
Member Reaction (lbs)	191		191
Loads to Supports (lbs)	201		201

Date: 04/15/2024 Job Code: 718 Remington Street Page **16** of **57**

Shear used for design (lbs)	N/A	157		-157	N/A
Shear at support node (lbs)	N/A	191		-191	N/A
Shear at span point load (lbs)		-	N/A		
Moment (Ft-lbs)			505	-	-
Live Load Deflection (in)			0.012"		
Total Load Deflection (in)		-	0.016"		

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Snow (LDF = 1.6)

oading On All Spans					
			10' 7"		<u> </u>
Member Reaction (lbs)	5	35		53	35
Loads to Supports (lbs)	5	65		54	65
Shear used for design (lbs)	N/A	441		-441	N/A
Shear at support node (lbs)	N/A	535		-535	N/A
Shear at span point load (lbs)		-	N/A	-	-
Moment (Ft-lbs)		-	1417		-
Live Load Deflection (in)		-	0.038"	-	-
Total Load Deflection (in)			0.044"		-

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Roof (LDF = 1.6)

Loading On All Spans					
			10' 7"		
Member Reaction (lbs)	1	78		15	78
Loads to Supports (lbs)	11	88		18	38
Shear used for design (lbs)	N/A	147		-147	N/A
Shear at support node (lbs)	N/A	178		-178	N/A
Shear at span point load (lbs)			N/A		
Moment (Ft-lbs)			472	-	
Live Load Deflection (in)			0.009"		
Total Load Deflection (in)			0.015"	-	-

1.0 Dead + 1.0 Snow (LDF = 1.15)

Loading On All Spans					
			10' 7"		1
Member Reaction (lbs)	54	40		54	40
Loads to Supports (lbs)	5	70		57	70
Shear used for design (lbs)	N/A	445		-445	N/A
Shear at support node (lbs)	N/A	540		-540	N/A
Shear at span point load (lbs)		-	N/A	-	-
Moment (Ft-lbs)			1429		-
Live Load Deflection (in)			0.039"		-
Total Load Deflection (in)		-	0.044"		-

ForteWEB v3.7, Design Engine Version V8.4.0.40

04/14/2024 5:03:42 PN

PASSED

FORTEWEB

MEMBER REPORT Level, 6X12-Uplift 1 piece(s) 6 x 12 DF No.2 @ 12" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	
Member Reaction (lbs)	1079 @ 13' 4 3/4"	12031 (3.50")	Passed (9%)		1.0 D (All Spans)	
Shear (lbs)	1359 @ 14' 6"	11469	Passed (12%)	1.60	0.6 D + 0.6 W (Adj Spans)	
Moment (Ft-lbs)	3867 @ 13' 4 3/4"	14091	Passed (27%)	1.60	0.6 D + 0.6 W (Adj Spans)	
Live Load Defl. (in)	0.034 @ 0	0.200	Passed (2L/886)		1.0 D + 0.6 W (Alt Spans)	
Total Load Defl. (in)	0.030 @ 0	0.200	Passed (2L/990)		0.6 D + 0.6 W (Alt Spans)	

Member Length : 26' 9 1/2" System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

Deflection criteria: LL (L/360) and TL (L/240).

Overhang deflection criteria: LL (0.2") and TL (0.2").

• A 0.4% decrease in the moment capacity has been added to account for lateral stability.

Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.

Applicable calculations are based on NDS.

	B	earing Leng	th	Loads	to Suppor		
Supports	Total	Available	Required	Dead	Wind	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.50"	425	-2797	425/-1423	Blocking
2 - Stud wall - DF	3.50"	3.50"	1.50"	1079	-6377	1079/-3178	Blocking
3 - Stud wall - DF	3.50"	3.50"	1.50"	425	-2797	425/-1423	Blocking

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' o/c	
Bottom Edge (Lu)	All Bearing Points	
		Dead Wind

Vertical Load	Location (Side)	Spacing	Dead (0.90)	Wind (1.60)	Comments
1 - Uniform (PLF)	0 to 26' 9 1/2"	N/A	72.0	-420.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Block)s are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by UCC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
AHZ Consulting Engineers Inc.		
		Weyerhaeuse

Date: 04/15/2024 Job Code: 718 **Remington Street** Page 18 of 57

FORTEWEB

PASSED

SOLUTIONS REPORT Level, 6X12-Uplift Current Solution: 1 piece(s) 6 x 12 DF No.2 @ 12" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	Member Length
Member Reaction (lbs)	1079 @ 13' 4 3/4"	12031 (3.50")	Passed (9%)		1.0 D (All Spans)	System : Roof
Shear (lbs)	1359 @ 14' 6"	11469	Passed (12%)	1.60	0.6 D + 0.6 W (Adj Spans)	Member Type : Building Use : F
Moment (Ft-lbs)	3867 @ 13' 4 3/4"	14091	Passed (27%)	1.60	0.6 D + 0.6 W (Adj Spans)	Building Code :
Live Load Defl. (in)	0.034 @ 0	0.200	Passed (2L/886)	-	1.0 D + 0.6 W (Alt Spans)	Design Method
Total Load Defl. (in)	0.030 @ 0	0.200	Passed (2L/990)		0.6 D + 0.6 W (Alt Spans)	Member Pitch :

26' 9 1/2" Joist esidential IBC 2018 logy : ASD 0/12

Depth Series Cost Index Plies Spacing 11 1/2" 6 x DF No.2 12" 1

The purpose of this report is for product comparison only. Load and support information necessary for professional design review is not displayed here. Please print an individual Member Report for submittal purposes.

ForteWEB Software Operator	Job Notes	
AHZ Consulting Engineers Inc.		
		Weyerhaeuse

> FULL DETAIL REPORT Level, 6X12-Uplift 1 piece(s) 6 x 12 DF No.2 © 12" OC

Date: 04/15/2024 Job Code: 718 Remington Street Page **19** of **57**

All load groups / combinations / patterns							
	1'3'		12' 1 3/4"		12 1 3/4"		1'3"
Maximum Down (lbs) / LDF	-	425/0.90	-	1079/0.90		425/0.90	-
Critical Down (lbs) / LDF	-	425/0.90		1079/0.90	-	425/0.90	-
Maximum Upifit (ibs) / LDF	-	-1423/1.60	-	-3178/1.60	-	-1423/1.60	-
Critical Uplift (lbs) / LDF	-	-1423/1.60		-3178/1.60		-1423/1.60	-
Bearing Length	-	3.50*	-	3.50*	-	3.50*	-
Support Fc-perp (psi)		625		625		625	-
Top edge required unbraced length / Ct	36.00*/0.9963	35.00%0.9963	36.00*/0.9963	36.00*/0.9963	36.00%	36.00*/0.9963	36.001/0.9963
Bottom edge required unbraced length / C.	15.00%0 9892	145 75% 9917	145 751/0 9834	145 75% 9917	145 75% 9834	145 75% 9917	15.001/0.9992

1.0 Dead (LDF = 0.9)

Loading On All Spans										
	1'3'	1'3'		12'13/4"		1	12'1 3/4'		1	1'3"
Member Reaction (Ibs)		425			1079		**	42	15	
Loads to Supports (lbs)		425		144 (1079			42	15	-
Shear used for design (ibs)		-11	255		-460	460		-255	11	
Shear at support node (ibs)		-90	335		-540	540	-	-335	90	
Sheer at span point load (ibs)	N/A		-	N/A			N/A	-		N/A
Moment (Ft-lbs)	a	4	56	723	-13	00	723	-56		0
Live Load Deflection (in)	0.000*		-	0.000*			0.000*			0.000*
Fotal Load Deflection (In)	-0.006*		-	0.016*			0.016*			-0.006*

1.0 Deed + 0.6 Wind (LDF = 1.6)

-

Loading On All Spans										
	1'3'		A	12'1 3/4"		4	12'1 3/4'		A	1'3"
Member Reaction (lbs)	-	-1062		-	-21	398		-11	062	-
Loads to Supports (lbs)		-1	062	÷+ 1	-2698		-	-1062		-
Shear used for design (ibs)	-	26	-638	-	1150	-1150		638	-26	1
Shear at support node (ibs)	-	225	-837		1349	-1349		837	-225	
Shear at span point load (lbs)	N/A		-	N/A	-		N/A		-	N/A
Moment (Ft-lbs)	0	1	41	-1806	3249		-1808	141		0
Jve Load Deflection (in)	0.021*		-	-0.055"		-	-0.055*		-	0.021*
Fotal Load Deflection (In)	0.015*			-0.039"			-0.039*	-	-	0.015"

1.0 Dead + 0.6 Wind (LDF = 1.6)

AI TERNATE apap loading on odd # apapa

	1'3'			12 1 3/4"			12 1 3/4"			1'3"
Member Reaction (ibs)	-	2	181		-6	909	-	······································	18	-
Loads to Supports (ibs)	(m)	2	181	**	-6	609		-9	18	
Shear used for design (ibs)	1.00	26	426		-289	-979		809	11	-
Shear at support node (ibs)	-	225	506	-	-369	-1178		1008	90	-
Shear at span point load (ibs)	N/A	-		N/A			N/A		-	N/A
Moment (Ft-lbs)	0	1	41	1918	975		-2880 -58		58	0
Live Load Deflection (in)	-0.013*			0.044*	-		-0.097*	-	2 ()	0.034*
Total Load Deflection (in)	-0.019*	1.1	- 1	0.059*	20		-0.081*			0.028*

1.0 Dead + 0.6 Wind (LDF = 1.6)

ALTERNATE span loading on even # spans

	1'3'	_	A	12'13/4"			12'1 3/4'		A	1'3"
Member Reaction (Ibs)	-	-	918	-	-8/	09		2	81	-
Loads to Supports (ibs)		- 4	918	-	-8	09	*	2	81	
Shear used for design (lbs)	-	-11	-809		979	289		-426	-26	-
Shear at support node (ibs)	-	-90	-1008	**	1178	369		-506	-225	-
Shear at span point load (lbs)	N/A		-	N/A			N/A		-	N/A
Moment (Ft-lbs)	0		56	-2580	97	5	1918	1-	41	0
Live Load Deflection (in)	0.034*		-	-0.097"		•	0.044*		÷ 1	-0.013*
Total Load Deflection (In)	0.028*		-	-0.081"			0.059*			-0.018*

1.0 Dead + 0.6 Wind (LDF = 1.6)

ADJACENT span loading on support

	1'.3'			12 1 3/4"			12'1 3/4'		1	1'3"
Member Reaction (Ibs)	-	-1	254		-78	35		2	77	-
Loads to Supports (ibs)		-1	254	-	-78	35		2	77	-
Shear used for design (lbs)		26	-830		959	293		-422	-26	
Shear at support node (lbs)		225	-1029	**	1158	373	44	-502	-225	
Shear at span point load (ibs)	N/A		20	N/A			N/A			N/A
Moment (Ft-lbs)	0	1	41	-2798	92	5	1890	1.	11	0
Live Load Deflection (in)	0.032*		-	-0.094"			0.043*			-0.013*
Total Load Deflection (in)	0.026*		-	-0.079"			0.058*			-0.019"

1.0 Dead + 0.6 Wind (LDF = 1.8)

ADJACENT span loading on support 2

	1'3'		A	12 1 3/4"		A	12 1 3/4"			1'3"
Member Reaction (Ibs)		-7	23		-2	747	-	-7	23	-
Loads to Supports (ibs)	120	-7	23	120	-2	747		-7	23	72
Shear used for design (lbs)		-11	-614	**	1175	-1175		614	11	-
Shear al support node (lbs)		-90	-813		1373	-1373	-	813	90	-
Shear at span point load (lbs)	N/A		-	N/A		- 1	N/A		4 1	N/A
Moment (Ft-lbs)	0		58	-1892	35	147	-1892	-4	56	0
Live Load Deflection (in)	0.022*		-	-0.057"			-0.057*	11.	-	0.022*
Total Load Deflection (in)	0.016*		-	-0.041"			-0.041*	· ·	-	0.016*

1.0 Dead + 0.6 Wind (LDF = 1.6)

ADJACENT span loading on support 3							
	1'3'		12'1 3/4"		12' 1 3/4"		1'3"
Member Reaction (Ibs)	-	277		-785		-1254	-

PASSED

Date: 04/15/2024 Job Code: 718 Remington Street Page **20** of **57**

Loads to Supports (ibs)	-	2	77		-7	85	**	-12	54	-
Shear used for design (lbs)		26	422		-293	-959	-	830	-26	(m)
Shear at support node (ibs)	-	225	502	÷.	-373	-1158	-	1029	-225	-
Shear at span point load (ibs)	N/A	a	-	N/A		-	N/A		-	N/A
Moment (Ft-Ibs)	0	1	41	1890	9	25	-2798	14	11	0
Live Load Deflection (in)	-0.013*		-	0.043*		4	-0.094"	-	-	0.032"
Total Load Deflection (In)	-0.019*	1 2	- I	0.058*			-0.079*		2	0.026*

0.6 Dead + 0.6 Wind (LDF = 1.5)

Loading On All Spans										
	1'3'		A	12'1 3/4"		A	12'1 3/4'		A	1'3"
Member Reaction (ibs)		-1	232	**	-3	130		-1	232	
Loads to Supports (ibs)	1. The second	-1	232		-3	130	**	-1	232	
Shear used for design (lbs)	-	30	-741	**	1334	-1334	**	741	-30	-
Shear at support node (ibs)	-	261	-971		1585	-1565	-	971	-261	
Shear at span point load (ibs)	N/A		-	N/A		-	N/A		-	N/A
Moment (Pt-lbs)	0	1	63	-2095	37	769	-2095	1	63	0
Live Load Deflection (In)	0.021*		-	-0.055"			-0.055*	1	-	0.021*
Total Load Deflection (in)	0.017*		-	-0.045"			-0.045"			0.017*

0.6 Dead + 0.6 Wind (LDF = 1.6)

ALTERNATE spen loading on odd # spans

						_				
Member Reaction (ibs)	-	1	11		-1:	241		-10	88	
Loads to Supports (lbs)		1	11	~	-1:	241		-10	88	-
Shear used for design (lbs)		30	324	**	-105	-1163		912	6	
Shear at support node (lbs)	-	261	372		-153	-1394	-	1142	54	
Shear at span point load (lbs)	N/A		-	N/A		-	N/A	-	-	N/A
Moment (Ft-ibs)	0	1	63	1764	14	195	-3158	4	и	0
Live Load Deflection (in)	-0.013*			0.044*		-	-0.097*			0.034*
Total Load Deflection (in)	-0.017*		e	0.053*			-0.087"			0.030"

0.6 Daad + 0.6 Wind (LDF = 1.5)

ALTERNATE span loading on even # span

	1'3'		A	12'1 3/4"		A	12'1 3/4'			1'3"
Member Reaction (ibs)		-1	088	-	-12	241		1	11	
Loads to Supports (ibs)		-1	088	1000	-15	241	. w	1	11	1122
Shear used for design (lbs)		-6	-912	-	1163	105	-	-324	-30	
Shear at support node (lbs)	-	-54	-1142		1394	153	-	-372	-261	
Shear at span point load (lbs)	N/A		-	N/A	1 4		N/A		2	N/A
Moment (Ft-lbs)	0		34	-3158	14	95	1764	1	63	0
Live Load Deflection (in)	0.034*		-	-0.097"		-	0.044*	97	-	-0.013*
Fotal Load Deflection (in)	0.030*		-	-0.087"			0.053*	a) .	-	-0.017*

0.6 Dead + 0.6 Wind (LDF = 1.6)

ADJACENT span loading on support 1

ADDAGENT Span loading on support 1										
	1'3'	_	A	12 1 3/4"			12'1 3/4'		A	1'3'
Member Reaction (ibs)			423		-12	17		1	07	-
Loads to Supports (ibs)	-	1	423	-	-12	17		1	07	
Shear used for design (lbs)		30	-932	123	1143	109	4	-320	-30	122
Shear at support node (ibs)		261	-1162		1374	157	**	-368	-281	
Shear at span point load (ibs)	N/A		-	N/A		•	N/A		< 1	N/A
Moment (Ft-ibs)	0	1	163		1445		1730	163		0
Live Load Deflection (in)	0.032*		-	-0.094"	-		0.043*		-	-0.013*
Total Load Deflection (in)	0.028*		-	-0.085"			0.052*			-0.016*

0.6 Dead + 0.6 Wind (LDF = 1.6)

ADJACENT spen loading on support 2

	1'3'			12 1 3/4"			12'1 3/4"			1'3"
Member Reaction (Ibs)		-8	393		-3	178		-8	93	
Loads to Supports (ibs)	-	-8	193	**	-3	178		-8	93	
Shear used for design (lbs)		-6	-718		1359	-1359	-	716	6	
Shear at support node (lbs)	120	-54	-947	-	1589	-1589	2	947	54	12
Shear at span point load (ibs)	N/A		-	N/A			N/A			N/A
Moment (Ft-lbs)	0		34	-2181	36	367	-2181	4	и	0
live Load Deflection (in)	0.022*		40	-0.057"	1	-	-0.057*		-	0.022*
Total Load Deflection (in)	0.019*			-0.047"			-0.047*		2	0.019*

0.6 Dead + 0.6 Wind (LDF = 1.6)

AD IACENT and leading on ourself 2

and a second and a second seco										
	1'3'		A	12'1 3/4"		A	12'1 3/4'			1'3"
Member Reaction (lbs)	-	1	07	-	-1:	217	-	-14	23	-
Loads to Supports (ibs)		1	07		-1:	217	Ξ.	-14	23	-
Shear used for design (lbs)	-	30	320		-109	-1143	**	932	-30	
Shear at support node (ibs)	-	261	368	-	-157	-1374		1162	-261	-
Shear at span point load (ibs)	N/A		-	N/A		-	N/A	-	-	N/A
Moment (Pt-lbs)	0	1	63	1730	14	145	-3073	10	53	0
Live Load Deflection (in)	-0.013*		-	0.043*	1		-0.094*			0.032
Total Load Deflection (in)	-0.016*	1 3	21	0.052*			-0.085*		-	0.028

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Roof (LDF = 1.6)

Loading On All Spans	1000									
	1'3'		A	12'1 3/4"		· · · ·	12' 1 3/4"		A	1'3"
Member Reaction (Ibs)		-е	390		-13	754		-6	90	-
Loads to Supports (ibs)		.e	390		-13	754		-	90	
Shear used for design (ibs)		17	-415		748	-748		415	-17	
Shear at support node (lbs)	-	146	-544	-	877	-877		544	-148	-
Shear at span point load (ibs)	N/A		-	N/A			N/A		-	N/A
Moment (Ft-lbs)	0		91	-1174	21	12	-1174		91	0
Live Load Deflection (in)	0.016*		-	-0.041"			-0.041*		-	0.016

Date: 04/15/2024 Job Code: 718 Remington Street Page **21** of **57**

Total Load Deflection (in) 0.010" -- -0.025" -- -0.025" -- 0.025"

1.0 Daad + 0.45 Wind + 0.75 Floor + 0.75 Roof (LDF = 1.6)

ALTERNATE span loading on odd # spans										
	1'3'		4	12'1 3/4"		A	12'1 3/4"			1'3"
Member Reaction (lbs)		3	17		-3	37		-5	62	-
Loads to Supports (lbs)		3	17		-3	37		-5	82	
Shear used for design (lbs)		17	384		-332	-619		543	11	-
Shear at support node (lbs)		146	463		-411	-749		672	90	
Shear at span point load (ibs)	N/A		-	N/A		-	N/A		2	N/A
Moment (Ft-lbs)	0	9	1	1581	4	06	-1989	-6	i6	0
Live Load Deflection (in)	-0.010'		-	0.033*		- 2	-0.072"	-	-	0.025
Total Load Deflection (in)	-0.016*			0.048*	2 ·		-0.057"			0.019

1.0 Deed + 0.45 Wind + 0.75 Floor + 0.75 Roof (LDF = 1.8)

ALTERNATE span loading on even # spans										
	1'3'		A	12'1 3/4"	2		12'1 3/4"		L	1'3'
Member Reaction (lbs)			682			-337		3	17	
Loads to Supports (lbs)	- 22	-8	682			-337		3	17	**
Shear used for design (ibs)		-11	-543		619	332		-384	-17	-
Shear at support node (lbs)	-	-90	-672		749	411		-463	-148	
Shear at span point load (ibs)	N/A	1		N/A		-	N/A		.	N/A
Moment (Ft-lbs)	0		56	-1989		406	1591	s	n	0
Live Load Deflection (in)	0.025*			-0.072*		-	0.033*		-	-0.010"
Total Load Deflection (in)	0.019*	1.0		-0.057"		-	0.048*	1.1	2	-0.016"

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Roof (LDF = 1.6)

ADJACENT span loading on support 1										
	1'3'		A	12 1 3/4"		A	12'1 3/4"		<u>۸</u>	1'3"
Member Reaction (lbs)			834		-3	319		3	14	
Loads to Supports (ibs)		- 24	834		-	319	-	3	14	-
Shear used for design (lbs)		17	-558	-	604	335		-381	-17	- 22
Shear at support node (lbs)		146	-688		733	414	**	-460	-146	
Shear at span point load (lbs)	N/A		-	N/A		-	N/A		-	N/A
Moment (Ft-lbs)	0		91	-1929	3	69	1562		1	0
Live Load Deflection (in)	0.024*		-	-0.070*		-	0.033*		- 1	-0.010
Total Load Deflection (in)	0.018*		-	-0.055"	4	-	0.047*			-0.016

1.0 Daad + 0.45 Wind + 0.75 Floor + 0.76 Roof (LDF = 1.8)

ADJACENT epan loading on support 2										
	1'3'		A	12 1 3/4"		A	12' 1 3/4"		¥	1'3"
Member Reaction (ibs)	**	-4	36	**	-1	790	**	-4	36	-
Loads to Supports (lbs)	-	-4	36		-1	790		-4	36	-
Shoar used for design (ibs)		-11	-397	-	786	-766		397	11	-
Shear at support node (lbs)		-90	-526	-	895	-895		526	90	-
Shear at span point load (ibs)	N/A			N/A			N/A			N/A
Moment (Ft-ibs)	0	-	56	-1238	2	186	-1238	4	56	0
Live Load Deflection (in)	0.017*			-0.042"		-	-0.D42*			0.017*
Total Load Deflection (in)	0.011*			-0.027		-	-0.027*	1 2		0.011*

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Roof (LDF = 1.8)

ADJACENT span loading on support 3										
	1'3'		Δ	12 1 3/4"		A	12'1 3/4"		A	1'3"
Member Reaction (Ibs)		3	14	**	-4	19	-		334	**
Loads to Supports (ibs)		3	14		-2	19		-	334	-
Shear used for design (ibs)		17	381		-335	-604		558	-17	-
Shear at support node (lbs)	-	146	460		-414	-733	**	688	-146	-
Shear at span point load (ibs)	N/A			N/A		-	N/A		-	N/A
Moment (Ft-lbs)	0	5	91	1562	3	89	-1929		91	0
Live Load Deflection (in)	-0.010*		-	0.033*		-	-0.070*		-	0.024*
Total Load Deflection (in)	-0.016*			0.047"	1	-	-0.055*		-	0.018"

ForteWEB v3.7, Design Engine Version V8.4.0.40

04/08/2024 1:20:45 AM

PASSED

FORTEWEB

MEMBER REPORT Level, 6X12-Downward 1 piece(s) 6 x 12 DF No.2 @ 12" OC

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4700 @ 13' 4 3/4"	12031 (3.50")	Passed (39%)		1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	2005 @ 14' 6"	8244	Passed (24%)	1.15	1.0 D + 1.0 S (Adj Spans)
Moment (Ft-lbs)	-5678 @ 13' 4 3/4"	10053	Passed (56%)	1.15	1.0 D + 1.0 S (Adj Spans)
Live Load Defl. (in)	0.076 @ 19' 11 7/16"	0.405	Passed (L/999+)		1.0 D + 0.45 W + 0.75 L + 0.75 S (Alt Spans)
Total Load Defl. (in)	0.091 @ 20' 3/8"	0.607	Passed (L/999+)		1.0 D + 0.45 W + 0.75 L + 0.75 S (Alt Spans)

mber Length : 26' 9 1/2" tem : Roof nber Type : Joist lding Use : Residential lding Code : IBC 2018 sign Methodology : ASD mber Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• A 1.1% decrease in the moment capacity has been added to account for lateral stability.

Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.

0 to 26' 9 1/2"

Applicable calculations are based on NDS.

	B	learing Leng	th	Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Snow	Wind	Factored	Accessories	
1 - Stud wall - DF	3.50"	3.50"	1.50"	425	1507	853	1939	Blocking	
2 - Stud wall - DF	3.50"	3.50"	1.50"	1079	3621	1943	4700	Blocking	
3 - Stud wall - DF	3.50"	3.50"	1.50"	425	1507	853	1939	Blocking	

Lateral Bracing	Bracing Inte	ervals	Comments			
Top Edge (Lu)	3' o/c					
Bottom Edge (Lu)	All Bearing P	oints				
			Dead	Snow	Wind	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	(1.60)	Comments

72.0

Weyerhaeuser Notes

1 - Uniform (PLF)

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

240.0

128.0 Default Load

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

N/A

ForteWEB Software Operator	Job Notes	
AHZ Consulting Engineers Inc.		
		Weyerhaeuse

Date: 04/15/2024 Job Code: 718 Remington Street Page **23** of **57**

FORTEWEB SOLUTIONS REPORT PASSED Level, 6X12-Downward Current Solution: 1 piece(s) 6 x 12 DF No.2 @ 12" OC Overall Length: 26' 9 1/2" • 0 Ó 12' 3 1/2" 12' 3 1/2" 1' 1 1/4" 1 1 1 4 3 1 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	Member Length : 26' 9 1/2
Member Reaction (lbs)	4700 @ 13' 4 3/4"	12031 (3.50")	Passed (39%)		1.0 D + 1.0 S (Adj Spans)	System : Roof
Shear (lbs)	2005 @ 14' 6"	8244	Passed (24%)	1.15	1.0 D + 1.0 S (Adj Spans)	Member Type : Joist Building Use : Residential
Moment (Ft-lbs)	-5678 @ 13' 4 3/4"	10053	Passed (56%)	1.15	1.0 D + 1.0 S (Adj Spans)	Building Code : IBC 2018
Live Load Defl. (in)	0.076 @ 19' 11 7/16"	0.405	Passed (L/999+)		1.0 D + 0.45 W + 0.75 L + 0.75 S (Alt Spans)	Design Methodology : ASD Member Pitch : 0/12
Total Load Defl. (in)	0.091 @ 20' 3/8"	0.607	Passed (L/999+)		1.0 D + 0.45 W + 0.75 L + 0.75 S (Alt Spans)	

All Product Solutions									
Depth	Series	Plies	Spacing	Cost Index					
9 1/2"	1 3/4" 1.55E TimberStrand® LSL	2	24"	2.15 *					
11 1/2"	6 x DF No.2	1	12"	6.85					

The purpose of this report is for product comparison only. Load and support information necessary for professional design review is not displayed here. Please print an individual Member Report for submittal purposes.

ForteWEB Software Operator	Job Notes	
AHZ Consulting Engineers Inc.		
		Weyerhaeuser

Date: 04/15/2024 Job Code: 718 **Remington Street** Page 24 of 57

FORTEWEB Summary of Loads to Supports

FULL DETAIL REPORT Lovel, 6X12-Downward 1 piece(s) 8 x 12 DF No.2 @ 12* OC

PASSED

All load groups / combinations / patterns							
	1'3'		12'1 3/4"	A	12'1 3/4"	A	1'3"
Maximum Down (lbs) / LDF		1938/1.60		4700/1.15		1939/1.60	-
Critical Down (lbs) / LDF	-	1932/1.15	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	4700/1.15		1932/1.15	-
Meximum Upifft (ibs) / LDF	-	0/1.00	-	0/1.00	-	0/1.00	-
Critical Uplift (lbs) / LDF	-	0/1.00	.++	0/1.00	-	0/1.00	-
Bearing Length	-	3.50*	-	3.50*	-	3.50*	-
Support Fc-perp (psi)		625		625		625	
Top edge required unbraced length / CL	N/A	N/A	36.00%0.9974	N/A	38.00% .9974	N/A	N/A
Bottom edge required unbraced length / CL	15.00%0.9989	145.75*/0.9890	145.75 /0.9890	145.75 /0.9890	145.75*/0.9890	145.75*/0.9890	15.00'/0.9989

1.0 Daad (LDF = 0.9)

Loading On All Spans										
	1'3'		A	12'13/4"		A	12'1 3/4"	-		1'3"
Member Reaction (lbs)		4	25		10	79	**	42	5	
Loads to Supports (lbs)	-	4	25	-	10	79		42	5	-
Shear used for design (Ibs)		-11	255		-460	460		-255	11	
Shear at support node (ibs)		-90	335		-540	540		-335	90	
Shear at span point load (ibs)	N/A		-		N/A		N/A	-		N/A
Moment (Ft-lbs)	a	4	56	723	-1300		723	-56		D
Live Load Deflection (in)	0.000*		-	0.000*			0.000*			0.000*
Fotal Load Deflection (In)	-0.006*		-	0.016*		-	0.016*			-0.006*

1.0 Dead + 0.75 Floor + 0.75 Snow (LDF = 1.15)

Loading On All Spans										
	1'3'		A	12'1 3/4"		A	12'1 3/4'			1'3"
Member Reaction (lbs)	-	1.	487		37	77	-	14	87	-
Loads to Supports (lbs)		1-	487	+	37	77	-	14	87	-
Shear used for design (lbs)	-	-37	894	-	-1610	1610	-	-894	37	12
Shear at support node (ibs)	-	-315	1172	-	-1889	1889		-1172	315	-
Shear at span point load (lbs)	N/A		-	N/A		-	N/A	-	-	N/A
Moment (Ft-ibs)	0	-1	-197		-4548		2529	-197		0
Live Load Deflection (in)	-0.015*		-	0.039*	1.1	4	0.039*		-	-0.015*
Total Load Deflection (In)	-0.021"			0.055*			0.055*			-0.021*

1.0 Dead + 0.75 Floor + 0.75 Snow (LDF = 1.15)

ALTERNATE span loading on odd # spans

	1'3'		4	12'1 3/4"		A	12 1 3/4"		A	1'3"
Member Reaction (lbs)	-	10	107		31	03		14	136	-
Loads to Supports (ibs)	(m)	10	07	**	31	03		14	136	
Shear used for design (ibs)	1.00	-37	514		-1096	1549		-965	24	
Shear at support node (ibs)	-	-315	692	-	-1275	1828		-1233	203	-
Shear at span point load (ibs)	N/A		-	N/A			NA		-	N/A
Moment (Ft-lbs)	0	-1	97	1283	-37	736	2891	-1	27	0
Live Load Deflection (in)	-0.003*		2	0.006*			0.054*		-	-0.020*
Total Load Deflection (in)	-0.009*			0.021*	1.1		0.069*			-0.028*

1.0 Deed + 0.75 Floor + 0.75 Snow (LDF = 1.15) ALTERNATE span loading on even # spans

	1'3'		Δ	12'13/4"			12'1 3/4"			1'3"
Member Reaction (Ibs)	-	14	136	-	31	03		10	07	-
Loads to Supports (ibs)		14	136	-	31	03	*	10	107	
Shear used for design (lbs)	-	-24	955	(++))	-1549	1096		-514	37	-
Shear at support node (lbs)	-	-203	1233	-	-1628	1275		-692	315	-
Shear at span point load (lbs)	N/A		-	N/A		-	N/A		-	N/A
Moment (Pt-Ibs)	0	-1	27	2891	-37	36	1283	-1	97	0
Live Load Deflection (in)	-0.020*	1.1	-	0.054*			0.006*		÷ 1	-0.003*
Total Load Deflection (In)	-0.026*			0.069*			0.021*			-0.008*

1.0 Dead + 0.75 Floor + 0.75 Snow (LDF = 1.15)

ADJACENT span loading on support 1										
	1'3'		A	12'1 3/4"			12'1 3/4'		L	1'3"
Member Reaction (lbs)		16	555	**	30	94	**	10	09	
Loads to Supports (lbs)		18	555	-	30	94		10	09	-
Shear used for design (ibs)	0.000	-37	962	**	-1542	1095	22	-515	37	0.00
Shear at support node (lbs)	-	-315	1240		-1820	1274	<u>66</u>	-694	315	
Shear at span point load (ibs)	N/A		20	N/A		-	N/A			N/A
Moment (Ft-lbs)	0	-1	-197		-3719		1289	-197		0
Live Load Deflection (in)	-0.019*	-	- 1	0.053*			0.006*			-0.003*
Total Load Deflection (in)	-0.025*	-		0.068*	-		0.021*			-0.009"

1.0 Daad + 0.75 Floor + 0.75 Snow (LDF = 1.15)

	1'3'		A	12'1 3/4"		10	12'1 3/4'			1'3"
Member Reaction (bs)		15	966		37	95	-	13	66	-
Loads to Supports (ibs)	120	18	866	120	37	95		13	66	72
Shear used for design (lbs)		-24	885	**	-1619	1619	**	-885	24	
Shear al support node (lbs)		-203	1163		-1897	1897	-	-1163	203	-
Shear at span point load (lbs)	N/A		-	N/A	-	- 2	N/A	-	4	N/A
Moment (Ft-lbs)	0	- 4	27	2559	-45	84	2559	-1	27	0
Live Load Deflection (in)	-0.015*		-	0.040*			0.040*	97	-	-0.015*
Total Load Deflection (In)	-0.021*			0.055*			0.055*	10 -	-	-0.021*

1.0 Dead + 0.75 Floor + 0.75 Snow (LDF = 1.15)

ADJACENT span loading on support 3							
	1'3'		12'1 3/4"		12' 1 3/4"		1'3"
Member Reaction (lbs)	-	1009	-	3094		1555	-

> N/A O

Date: 04/15/2024 Job Code: 718 Remington Street Page **25** of **57**

Loads to Supports (ibs)	-	10	009		30	94	**	15	65	-
Shear used for design (lbe)		-37	515	**	-1095	1542	-	-962	37	(m)
Shear at support node (ibs)	-	-315	694	-	-1274	1820	-	-1240	315	-
Shear at span point load (ibs)	N/A	a	-	N/A		-	N/A			N/A
Moment (Ft-Ibs)	0	-1	97	1289	-37	19	2856	-1	97	0
Live Load Deflection (in)	-0.003*		-	0.006*		4.5	0.053*	-	-	-0.019*
Total Load Deflection (In)	-0.009*		- I	0.021*			0.068*		2	-0.025*

1.0 Dead + 0.6 Wind (LDF = 1.6)

Loading On All Spans										
	1'3'			12'1 3/4"			12'1 3/4"			1'3"
Member Reaction (ibs)		8	78	**	22	230		8	78	
Loads to Supports (ibs)	0.000	8	78		22	230	**	8	78	
Shear used for design (lbs)	-	-22	528	**	-951	951		-528	22	-
Shear at support node (ibs)		-186	692		-1115	1115	**	-692	186	
Shear at span point load (ibs)	N/A		-	N/A		-	N/A		-	N/A
Moment (Pt-lbs)	0	-1	16	1493	-26	386	1493	-1	16	0
Live Load Deflection (In)	-0.006*			0.017*			0.017*		-	-0.006*
Total Load Deflection (in)	-0.012"		- C	0.032*			0.032"		4	-0.012"

1.0 Deed + 0.6 Wind (LDF = 1.6)

ALTERNATE span loading on odd # spans										
	1'3'		Δ	12' 1 3/4"		A	12 1 3/4'		A	
Member Reaction (lbs)	-	4	69		18	355		8	34	
Loads to Supports (lbs)	-	4	69	~	16	355	-	8	34	
Shear used for design (lbs)	-	-22	203	**	-512	899		-580	11	
Shear at support node (lbs)	1.000	-186	283		-592	1063	**	-744	90	
Shear at span point load (lbs)	N/A		-	N/A			N/A		-	
Moment (Ft-lbs)	0	-1	16	439	-1:	993	1805		56	
Live Load Deflection (in)	0.004*		-	-0.013"		-	0.029*		-	
Total Load Deflection (in)	-0.002*		-	-0.005"			0.045*		<i></i>	1

1.0 Daad + 0.6 Wind (LDF = 1.5)

ALTERNATE apan loading on even # spans

ALTERNATE span loading on even # spans										
	1'3'		A	12'1 3/4"			12'1 3/4'			1'3"
Member Reaction (Ibs)		8	34	**	16	55		48	39	
Loads to Supports (ibs)	1.00	8	34	100	16	55	12	44	39	100
Shear used for design (lbs)		-11	680		-899	512		-203	22	-
Shear at support node (lbs)	-	-90	744	(44)	-1063	592		-283	186	
Shear at span point load (Ibs)	N/A		-		-		N/A			N/A
Moment (Ft-lbs)	0	4	-56		-1993		439	-1	16	0
Live Load Deflection (in)	-0.010*		-	0.029*			-0.013*	u	-	0.004*
Total Load Deflection (in)	-0.016*						-0.005*			-0.002*

1.0 Dead + 0.6 Wind (LDF = 1.6)

ADJACENT span loading on support 1

not south a part to terry of a post t										
	1'3'		Δ	12'1 3/4"			12'1.3/4"		<u> </u>	1'3"
Member Reaction (bs)		g	36		16	47		47	70	-
Loads to Supports (ibs)	-	9	36	-	16	47		43	70	-
Shear used for design (lbs)		-22	588	140	-893	511	4	-204	22	1
Shear at support node (lbs)		-186	750	**	-1057	591		-284	196	
Shear at span point load (ibs)	N/A	1.1	-	N/A		•	N/A		< 1	N/A
Moment (Ft-lbs)	0	-1	16	1776	-19	178	444	-1	16	0
Live Load Deflection (in)	-0.010*		-	0.029*	-		-0.013*		-	0.004*
Total Load Deflection (in)	-0.016*			0.044*			-0.005*			-0.002*

1.0 Dead + 0.6 Wind (LDF = 1.8)

ADJACENT spen loading on support 2

	1'3'		A	12'13/4"			12'1 3/4'			1'3"
Member Reaction (ibs)		7	76		22	45		7	75	
Loads to Supports (ibs)	-	7	75	**	22	45		7	75	-
Shear used for design (Ibs)		-11	520	-	-968	958	4	-520	11	-
Shear at support node (ibs)	122	-90	685	-	-1123	1123		-685	90	1
Shear at span point load (ibs)	N/A		-	N/A			N/A			N/A
Moment (Ft-Ibs)	0	-	56	1519	-27	16	1519	-6	i6	0
Live Load Deflection (in)	-0.007*		-	0.017*			0.017*		-	-0.007*
Total Load Deflection (in)	-0.013*			0.033*		S	0.033*		2	-0.013"

1.0 Daad + 0.6 Wind (LDF = 1.6)

AD IACENT and leading on surgery 2

aborto arti opani ionaning on oupport o										
	1'3'		Δ	12'1 3/4"		A	12' 1 3/4'		L	1'3'
Member Reaction (lbs)	-	4	70	-	16	147	-	90	36	-
Loads to Supports (ibs)		- 4	70		16	547	Ξ.	90	86	
Shear used for design (lbs)	-	-22	204		-511	893	**	-586	22	
Shear at support node (lbs)	-	-186	284		-591	1057		-750	186	
Shear at span point load (ibs)	N/A		-	N/A		-	N/A		-	N/A
Moment (Ft-Iba)	0	- 4	16	444	-11	978	1776	-1	16	0
Live Load Deflection (in)	0.004*		-	-0.013"			0.029*		- 1	-0.010*
Total Load Deflection (in)	-0.002*		22	-0.005"	1		0.044*			-0.016*

0.8 Deed + 0.6 Wind (LDF = 1.8)

Loading On All Spans	1000									
	1'3'		A	12'13/4"		· · · ·	12'1 3/4"		A	1'3"
Member Reaction (Ibs)		7	06	-	17	99		7	08	-
Loads to Supports (lbs)		7	06		17	99		7	08	
Shear used for design (ibs)		-18	426		-767	767		-426	18	
Shear at support node (ibs)	-	-150	558	-	-899	899	-	-558	150	-
Shear at span point load (ibs)	N/A		-	N/A		-	N/A		-	N/A
Moment (Ft-lbs)	0		94	1204	-21	66	1204	-4	34	0
Live Load Deflection (in)	-0.006*			0.017*		-	0.017*		-	-0.006*

Date: 04/15/2024 Job Code: 718 Remington Street Page **26** of **57**

Total Load Deflection (in) -0.010* -- 0.028* -- 0.028* -- -0.010*

0.6 Dasd + 0.6 Wind (LDF = 1.6)

ALTERNATE span loading on odd # spans										
	1'3'		A	12'1 3/4"			12' 1 3/4'			1' 3"
Member Reaction (lbs)	-	2	99		12	23		64	34	-
Loads to Supports (ibs)	-	2	99		12	223	-	64	34	
Shear used for design (ibs)	-	-18	101	-	-328	715		-478	8	-
Shear at support node (lbs)		-150	149		-376	847		-610	54	
Shear at span point load (ibs)	N/A		-	N/A			N/A	-		N/A
Moment (Ft-Ibs)	0	4	94	163	-14	473	1518	4	14	0
Live Load Deflection (in)	0.004*		-	-0.013"		-	0.029*			-0.010"
Total Load Deflection (in)	0.000*			-0.007"			0.039*			-0.014*

0.8 Dead + 0.6 Wind (LDF = 1.8)

ALTERNATE span loading on even # spans

	1'3'	1'3'		12'1 3/4"			12'1 3/4'			1'3"
Member Reaction (Ibs)	-	6	64	-	12	23		2	99	
Loads to Supports (lbs)		6	64		12	23		2	9	-
Shear used for design (ibs)	-	-6	478		-715	328	**	-101	18	-
Shear at support node (lbs)	-	-54	610	-	-847	376	-	-149	150	-
Shear at span point load (ibs)	N/A		-	N/A		-	N/A		-	N/A
Moment (Ft-lbs)	0	4	34	1518	-14	473	163	4	и	0
live Load Deflection (in)	-0.010*		-	0.029*			-0.013*		-	0.004*
Total Load Deflection (in)	-0.014*		-	0.039*			-0.007*			0.000*

0.5 Dead + 0.6 Wind (LDF = 1.6)

ADJACENT span loading on support 1

Construction of the second										
	1'3'		Δ	12'1 3/4"			12 1 3/4"			1'3"
Member Reaction (Ibs)	-	7	66		12	16		3	00	
Loads to Supports (ibs)		71	66		12	16		3	00	
Shear used for design (lbs)	-	-18	484	**	-709	327		-102	18	-
Shear at support node (lbs)	1	-150	616	1000	-841	375		-150	150	-
Shear at span point load (ibs)	N/A			N/A		-	N/A		-	N/A
Moment (Ft-ibs)	0	-6	24	1490	-14	158	167	-4	34	0
ive Load Deflection (in)	-0.010*		-	0.029*		-	-0.013*		-	0.004*
Fotal Load Deflection (in)	-0.013*	1.1.1	2	0.038*	1 1		-0.007*			0.000*

0.6 Dead + 0.6 Wind (LDF = 1.8)

1			
ADJACENT	span loading	on support	2

	1'3'			12'1 3/4"		A	12 1 3/4'			1'3"
Member Reaction (ibs)		6	05		18	814		6	15	-
Loads to Supports (ibs)	-	6	05	**	18	814		6	05	-
Shear used for design (ibs)		-6	418	**	-774	774	*	-418	8	-
Shear at support node (ibs)	2440	-54	551		-907	907		-551	54	-
Shear at span point load (ibs)	N/A		-	N/A			N/A			N/A
Moment (Ft-Ibs)	0		34	1230	-2	196	1230	4	и	0
Live Load Deflection (in)	-0.007*		-	0.017*		-	0.017*			-0.007*
Total Load Deflection (in)	-0.010*	1 1	-	0.027*	1		0.027*		-	-0.010*

0.8 Dead + 0.6 Wind (LDF = 1.8)

ADJACENT span loading on support 3										
	1'3'		Δ	12'1 3/4"		4	12 1 3/4"		1	1'3"
Member Reaction (ibs)	-	3	00		12	216	-	76	36	-
Loads to Supports (lbs)	-	3	00	-	12	216		78	36	-
Shear used for design (ibs)		-18	102		-327	709		-484	18	
Shear at support node (lbs)	-	-150	150	**	-375	841	**	-616	150	
Shear at span point load (lbs)	N/A		-	N/A		-	N/A	-	- 1	N/A
Moment (Ft-ibs)	0		4	167	-1-	458	1490	-6	и	0
Live Load Deflection (in)	D.004*		-	-0.013"			0.029*		-	-0.010*
Total Load Deflection (in)	0.000*		-	-0.007"			0.038*	-		-0.013*

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Snow (LDF = 1.6)

Loading On All Spans										
	1'3'		A	12'1 3/4"			12'1 3/4'		L	1'3"
Member Reaction (lbs)	-	18	827	-	48	41	-	18	27	-
Loads to Supports (lbs)	-	18	827	-	46	41	**	18	27	-
Shear used for design (ibs)	-	-45	1098	-	-1978	1978		-1098	45	-
Shear at support node (ibs)	1000	-387	1440	100	-2320	2320		-1440	387	-
Shear at span point load (lbs)	N/A	1	-	N/A		-	N/A		2	N/A
Moment (Ft-Iba)	0	-2	42	3107	-58	588	3107	-2	42	D
Live Load Deflection (in)	-0.020*		-	0.052*		-	0.052*		-	-0.020*
Total Load Deflection (in)	-0.028*		-	0.067*			0.067*	4		-0.028*

1.0 Daad + 0.45 Wind + 0.75 Floor + 0.75 Snow (LDF = 1.8)

ALTERNATE apan loading on odd # apana

	1'3'	3'		12'13/4"		A				1'3"
Member Reaction (ibs)	-	10	40		35	34		17	43	
Loads to Supports (ibs)		10	40	**	35	34	*	17	43	
Shear used for design (ibs)		-45	474	-	-1135	1878		-1198	24	-
Shear at support node (lbs)		-387	653		-1314	2220		-1540	203	-
Shear at span point load (ibs)	N/A	1.1.2	-	N/A		• .	NA			N/A
Moment (Ft-lbs)	0	-2	42	1075	-42	256	3704	-13	27	0
Live Load Deflection (in)	0.000*		÷	-0.013"		-	0.076*	-		-0.027*
Fotal Load Deflection (in)	-0.006*			0.013*			0.091"			-0.033*

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Snow (LDF = 1.6)

ALTERNATE spen loading on even # spens							
	1'3'		12' 1 3/4"		12' 1 3/4'		1'3"
Member Reaction (Ibs)	-	1743		3534	0 = <u></u> 8	1040	

Date: 04/15/2024 Job Code: 718 Remington Street Page **27** of **57**

Loads to Supports (ibs)	-	- 1743			3534		**	10	-	
Shear used for design (lbs)	100	-24	1198	**	-1878	1135	-	-474	45	(m)
Shear at support node (ibs)	-	-203	1540	-	-2220	1314	-	-653	387	-
Shear at span point load (ibs)	N/A		-	N/A		-	N/A	2	-	N/A
Moment (Ft-Ibs)	0	-1	27	3704	-42	256	1075	-2	42	0
Live Load Deflection (in)	-0.027*		-	0.076*		40	-0.013*		-	0.000*
Total Load Deflection (In)	-0.033*	1 2		0.091*			0.013*		2	-0.006*

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Snow (LDF = 1.6)

ADJACENT span loading on support 1										
	1'3'		A	12'1 3/4"			12'1 3/4"			1'3"
Member Reaction (bs)	-	15	39	**	35	i20		10	43	
Loads to Supports (lbs)		15	39		36	20	**	10	43	
Shear used for design (lbs)	-	-45	1210	**	1866	1133	**	-477	45	
Shear at support node (lbs)	1.00	-387	1552		-2208	1312	**	-656	387	-
Shear at span point load (ibs)	N/A		-	N/A		-	N/A			N/A
Moment (Ft-Ibs)	0	-2	42	3648	-43	227	1085	-2	42	0
Live Load Deflection (in)	-0.026*		-	0.074*			-0.012*		-	0.000*
Total Load Deflection (in)	-0.032"			0.090*	1		0.013*		2 C	-0.006"

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Snow (LDF = 1.6)

ADJACENT span loading on support 2

	1'3'		A	12' 1 3/4"		¥2	12'1 3/4'		<u> </u>	1'3"
Member Reaction (ibs)	-	18	528		46	69		16	28	-
Loads to Supports (lbs)		16	528	~	48	69	-	16	28	-
Shear used for design (lbs)	-	-24	1084	**	-1993	1993		-1084	24	
Shear at support node (lbs)		-203	1428	**	-2335	2335	**	-1426	203	-
Shear at span point load (lbs)	N/A		-	N/A			N/A		-	N/A
Moment (Ft-lbs)	0	-1	127	3158	-56	48	3156	-1:	27	0
Live Load Deflection (in)	-0.021*		-	0.053*			0.053*		-	-0.021*
Total Load Deflection (in)	-0.027°		-	0.068"			0.068"			-0.027*

1.0 Daed + 0.45 Wind + 0.75 Floor + 0.75 Snow (LDF = 1.6)

ADJACENT span loading on support 3

	1'3'		A	12'1 3/4"			12'1 3/4'			1'3"
Member Reaction (ibs)	-	10	243	**	35	20		193	39	
Loads to Supports (ibs)		10	43	9000	35	20	122	193	39	1122
Shear used for design (lbs)		-45	477		-1133	1866	-	-1210	45	-
Shear at support node (ibs)		-387	656		-1312	2208	-	-1552	387	-
Shear at span point load (lbs)	N/A		-	N/A		-	N/A	-		N/A
Moment (Ft-lbs)	0	-2	42	1085	-42	227	3648	-24	12	0
Live Load Deflection (in)	0.000*		-	-0.012"		-	0.074*			-0.026*
Total Load Deflection (in)	-0.006*		-	0.013*			0.090*	9		-0.032*

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Root (LDF = 1.6)

Loading On All Spans										
	1'3'	/	Δ	12'1 3/4"		1	12'1.3/4"		<u> </u>	1'3"
Member Reaction (ibs)		71	66		19	43	10	70	56	-
Loads to Supports (ibs)		7	66	-	19	43		70	35	
Shear used for design (lbs)		-19	460	223	-826	828	-	-460	19	1922
Shear at support node (ibs)		-162	603		-971	971	**	-603	182	
Shear at span point load (ibs)	N/A		-	N/A		•	NA		< 1	N/A
Moment (Ft-ibs)	0	-1	01	1301	-23	339	1301	-1	01	0
Live Load Deflection (in)	-0.005*		-	0.013*			0.013*			-0.005*
Total Load Deflection (in)	-0.011*		-	0.028*			0.028*	-		-0.011"

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Roof (LDF = 1.6)

AI TERNATE anan inading on origit a spage

	1'3'		A	12' 1 3/4"		<u> </u>	12 1 3/4"			1'3"
Member Reaction (ibs)		4	58		15	11		7	12	
.oads to Supports (ibs)	-	4	58	**	15	11		7.	12	
Shear used for design (lbs)	-	-19	218	+-	-499	789	-	-499	11	-
Shear at support node (lbs)	100	-162	296	-	-579	932		-642	90	1
Shear at span point load (ibs)	N/A		-	N/A			N/A			N/A
doment (Ft-ibs)	0	-1	01	506	-18	19	1533	-6	6	0
live Load Deflection (in)	0.003*	1	41	-0.010"	4		0.022*			-0.006*
Fotal Load Deflection (in)	-0.003*			0.007*		18 - L	0.038*			-0.014"

1.0 Daad + 0.45 Wind + 0.75 Floor + 0.75 Roof (LDF = 1.8)

ALTERNATE span loading on even # spans

	1'3'		A	12'1 3/4"		A	12'1 3/4"		L	1'3"
Member Reaction (lbs)	-	7	32	-	15	511	-	48	58	-
Loads to Supports (ibe)	-	7	32		15	511	H.	48	58	
Shear used for design (lbs)		-11	499		-789	499	**	-216	19	
Shear at support node (ibs)	144	-90	642		-932	579	-	-296	162	
Shear at span point load (ibs)	N/A		-	N/A		-	NA		-	N/A
Moment (Ft-Ibs)	0	4	56	1533	-18	319	506	-1	01	0
Live Load Deflection (in)	-0.008*	1.1	- C	0.022*			-0.010*			0.003*
Total Load Deflection (in)	-0.014*	5	23	0.038"	1	-	0.007*		-	-0.003*

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Roof (LDF = 1.6)

ADJACENT span loading on support 1										
	1'3'	A		12'1 3/4"	A		12' 1 3/4"			1'3"
Member Reaction (bs)		8	90	-	15	05		4	59	-
Loads to Supports (ibs)		809			1505			459		
Shear used for design (ibs)		-19	503		-784	498	**	-217	19	
Shear at support node (lbs)	-	-162	647	-	-928	578		-297	162	-
Shear at span point load (ibs)	N/A			N/A			N/A		2	N/A
Moment (Ft-Ibs)	0	-1	01	1511	-18	68	510	-1	01	0
Live Load Deflection (in)	-0.007*			0.021*			-0.010*		-	0.003*

Date: 04/15/2024 Job Code: 718 Remington Street Page **28** of **57**

Total Load Deflection (In) -0.013" -- 0.037" -- 0.007" -- -0.003"

1.0 Dead + 0.45 Wind + 0.75 Floor + 0.75 Roof (LDF = 1.8)

ADJACENT span loading on support 2										
	1'3'		A	12'1 3/4"		A	12'1 3/4"		A	1'3"
Member Reaction (lbs)	-	6	87		15	154	**	6	87	
Loads to Supports (ibs)		6	87		19	154	<u> </u>	6	87	
Shear used for design (ibs)	-	-11	454	-	-834	834		-454	11	
Shear at support node (lbs)		-90	597		-977	977		-597	90	
Shear at span point load (ibs)	N/A		-	N/A			N/A		-	N/A
Moment (Ft-Ibs)	0	4	56	1320	-23	362	1320	4	56	0
Live Load Deflection (in)	-0.005*		-	0.013*		-	0.013*		-	-0.005"
Total Load Deflection (in)	-0.011*			0.029*			.029*			-0.011*

1.0 Deed + 0.45 Wind + 0.75 Floor + 0.75 Roof (LDF = 1.6)

ADJACENT span loading on support 3										
	1'3'		A	12'1 3/4"		A	12 1 3/4"			1'3"
Member Reaction (ibs)		4	59	-	15	05	-	80	19	
Loads to Supports (lbs)		4	59		18	05	H	80	19	-
Shear used for design (ibs)	-	-19	217	**	-498	784		-503	19	-
Shear al support node (lbs)	-	-162	297	-	-578	928		-647	162	-
Shear at span point load (ibs)	N/A		-	N/A	-		N/A		-	N/A
Moment (Ft-lbs)	0	-1	01	510	-18	808	1511	-1	01	0
live Load Deflection (in)	0.003*		-	-0.010"		-	0.021*		-	-0.007*
Total Load Deflection (in)	-0.003*		-	0.007*			0.037*		-	-0.013*

1.0 Deed + 1.0 Snow (LDF = 1.15)

Loading On All Spans										
-	1'3'		A	12'1 3/4"		A	12 1 3/4"		Δ	1'3'
Member Reaction (Ibs)	-	18	841		46	77		18	541	-
Loads to Supports (ladi)	-	18	841		46	577		18	341	
Shear used for design (lbs)	-	-46	1107	**	-1994	1994		-1107	48	-
Shear at support node (lbs)	1	-390	1451	100	-2338	2338		-1451	390	-
Shear at span point load (lbs)	N/A			N/A		-	N/A	10	-	N/A
Moment (Ft-ibs)	0	-2	244	3131	-54	531	3131	-2	44	0
Live Load Deflection (in)	-0.020*		-	0.052*		-	0.052*		-	-0.020*
Total Load Deflection (in)	-0.026*	1	20	0.068*	1	2 I I	0.068*		<i></i>	-0.026*

1.0 Dead + 1.0 Snow (LDF = 1.16)

ERNATE span loading on odd # spans

	1'3'	-	A	12'13/4"		<u> </u>	12 1 3/4"		A	1'3"
Member Reaction (ibs)		12	02	-	37	77	**	17	73	-
Loads to Supports (lbs)		12	02	**	37	77		17	73	
Shear used for design (ibs)	-	-46	600		-1308	1912	-	-1188	28	-
Shear at support node (ibs)		-390	812	**	-1520	2257		-1533	240	
Shear at span point load (ibs)	N/A		- C	N/A			N/A		2 I.	N/A
Moment (Ft-Iba)	o	-2	44	1472	-48	548	3614	-1	50	0
Live Load Deflection (in)	-0.004*		-	0.008*			0.072*			-0.026*
Total Load Deflection (in)	-0.010*	1.1		0.023*	1 4		0.087*		4	-0.032*

1.0 Daad + 1.0 Snow (LDF = 1.15)

ALTERNATE span loading on even # spans

	1.3		A	12 1 3/4			12 1 3/4		A	1.3
Member Reaction (ibs)	-	17	73	-	37	77	-	12	:02	-
Loads to Supports (lbs)	-	17	73	-	37	77	-	12	:02	
Shear used for design (ibs)		-28	1188		-1912	1308		-600	46	
Shear at support node (ibs)	-	-240	1533	**	-2257	1520	*	-812	390	
Shear at span point load (ibs)	N/A		-	N/A	4	-	N/A		-	N/A
Moment (Ft-lbs)	0	-1	50	3614	-45	548	1472	-2	44	0
Live Load Deflection (in)	-0.026*			0.072*			0.008*			-0.004*
Total Load Deflection (in)	-0.032"		. 8	0.087*			0.023"			-0.010*

1.0 Daad + 1.0 Snow (LDF = 1.15)

ADJACENT span loading on support 1										
	1'3'		A	12'1 3/4"		<u> </u>	12'1 3/4'		A	1'3"
Member Reaction (lbs)	-	19	32	-	37	66		12	:04	-
Loads to Supports (ibs)	-	15	32	-	37	66	**	12	:04	
Shear used for design (ibs)	-	-46	1198	-	-1903	1306		-602	46	-
Shear at support node (ibs)		-390	1542	100	-2247	1518		-814	390	-
Shear at span point load (ibs)	N/A	1	-	N/A		-	N/A		2	N/A
Moment (Ft-Iba)	0	-2	944	3568	-4	525	1480	-2	44	0
Live Load Deflection (in)	-0.025*		-	0.070*		-	0.008*		-	-0.004*
Total Load Deflection (in)	-0.031"			0.086*			0.023*			-0.010*

1.0 Dead + 1.0 Snow (LDF = 1.15)

ADJACENT span loading on support 2

	1'3'		A	12 1 3/4"		A	12 1 3/4"			1'3"
Aember Reaction (ibs)		16	380		47	00		16	80	1.00
oads to Supports (ibs)		16	80		47	00		16	80	
Shear used for design (ibs)	-	-28	1095	-	-2005	2005	-	-1095	28	-
ihear at support node (lbs)	-	-240	1440		-2350	2350		-1440	240	-
hear at span point load (ibs)	N/A	1.1.1	-	N/A		-	NA			N/A
foment (Ft-ibs)	C	-1	50	3171	-56	578	3171	-16	10	0
ive Load Daflection (in)	-0.021*		-	0.053*		-	0.053*	-		-0.021
otal Load Deflection (in)	-0.027'			0.069*			0.069*			-0.027

1.0 Doed + 1.0 Snow (LDF = 1.15)

ADJACENT span loading on support 3							
	1'3'		12'1 3/4"	A	12'1 3/4"		1'3"
Member Reaction (ba)		1904		3766		1022	

Date: 04/15/2024 Job Code: 718 Remington Street Page **29** of **57**

Loads to Supports (lbs)		12	04	**	37	66	-	19	32	-
Shear used for design (lbs)	-	-46	602	-	-1308	1903		-1198	46	-
Shear at support node (lbs)		-390	814	**	-1518	2247	**	-1542	390	-
Shear at span point load (lbs)	N/A			N/A		-	N/A		-	N/A
Moment (Ft-ibs)	0	-2	44	1480	-45	125	3568	-2	44	0
Live Load Deflection (in)	-0.004'	0.00	2	0.008*		<u>-</u> 2	0.070*		2	-0.025*
Total Load Deflection (In)	-0.010'			0.023*			0.086*			-0.031"

ForteWEB v3.7, Design Engine Version V8.4.0.40

04/08/2024 1:27:35 AN

Date: 04/15/2024 Job Code: 718 Remington Street Page **30** of **57**

Appendix 2 LSSR410Z Simpson Strong-Tie Connector

Date: 04/15/2024 Job Code: 718 Remington Street Page **31** of **57**

Date: 04/15/2024 Job Code: 718 Remington Street Page **32** of **57**

3D Model							
					Quantity	F	
		Connection Type	Joist (Flush Top)		Di dol.	716 Remington	
					Uplift Duration	Quake/Wind (160)	
inputs		Country	USA		Download Duration	Quake/Wind (160)	
16 Remingtor nput	ettings			ob Settings	Hanger Type	All Types	eader

			and the second se		The second se	1018.00 A 101 A	Acr 10 201 2	
Solid Sawn	DF (Dougla:	is Fir)	6x (5 1/2")	12 (11 1/2")	L I	й 	sader 1	No
oist								
Member Type	Lumber Species	Width	Depth	Number of Plies	Member ID	Rough Lumber	Download (ASD)	Uplift (ASD)
Solid Sawn	DF (Douglas Fir)	4x (3 1/2")	12 (11 1/4")	1	Joist 1	No	220	478

ē

ber ID

Number of Plies

Depth

Width

Member Type

Hanger Options

Center	Centered (No Offset)	0	No Sloped	0	Normal	-7	No Sloped	0	No Skew
High, Low, Center Flush	Offset Direction	Top Flange Slope (Degrees)	Sloped Down Type	Top Flange Bend (Degrees)	Open Closed Type	Slope (Degrees)	Slope Type	Skew (Degrees)	Skew Type

716 Remington output

Output

Result

AHZ Consulting Engineers, Inc. 111 Rodeo Irvine, CA 92602 (949) 466-1544

Date: 04/15/2024 Job Code: 718 **Remington Street** Page **33** of **57**

											8	Table Note
	730	2330	(6) 0.148 x 3 Nall (10d Common)	(16) 0.148 x 1.5 Nail (N10)			2	5	3.563	+46.00%	U414X SLU7	0
	730	3000	(6) 0.148 x 3 Nail (10d Common)	(16) 0.162 x 3.1/2 Nail (16d Common)		4	2	臣	3.563	+46.00%	U414X SLU7	0
	730	2900	(6) <u>0.148 x 3 Nail</u> (10d Common)	(16) 0.148 x 3 Nail (10d Common).		÷	2	5	3.563	+45.00%	N414X SLU7	0
	1265	3885	(<u>8) 0.162 x 3 1/2 Nail</u> (16d Common)	(22) <u>0.162 x 3 1/2 Nail</u> (16d Common),		a.	3	7.125	3.625	+42.00%	HHUS48X SLU7	0
	1080	3310	(8) 0.148 <u>x 3 Nail</u> (10d Common)	(22) <u>0.148 x 3 Nail</u> (10d Commo <u>n</u>)			8	7.125	3.625	+42.00%	HHUS48X SLU7	0
	730	2900	(6) 0.148 x 3 Nall (10d Common)	(14) 0.162 x 3 1/2 Nall (16d Common)	,	Ŧ	2	8.375	3.563	+26.00%	U410X SLU7	0
	730	2105	(<u>6) 0.148 x 3 Nall</u> (10d Common)	(14) 0.148 x 1.5 Nail (N10)			2	8.375	3.563	+26.00%	U410X SLU7	0
	730	2600	(6) 0.148 x 3 Nail (10d Common)	(14) 0.148 x 3 Nail (10d Common).		x	2	8.375	3.563	+25.00%	U410X SLU7	0
	695	2365	(1 <u>8) 0.162 x 2 1/2 Nail</u> (<u>N16)</u>	(22) 0.162 x 2 1/2 Nail (N16)		5	1.875	8.938	3.563	Lowest	LSSR410Z	0
	695	3015	(18) <u>0.162 x 2 1/2 Nail</u> (N16)	(26) 0.162 x 2 1/2 Nail (N16)		Ţ	1.875	8.938	3.563	Lowest	LSSR410Z	•
(sq	Uplift (I	Download (lbs)	Joist Fasteners	Face Fasteners	TF Fasteners	TF Depth	Bearing	Height	Width	Installed Cost	del	Mo
s: Yes	Model	how Optimized	S									

1. All loads are displayed in units of pounds and based on Allowable Stress Design

2. Click on the Models above to be taken to the product page for more information, refer to the current Wood Construction Connectors catalog for General Notes and Installation Instructions

Date: 04/15/2024 Job Code: 718 Remington Street Page **34** of **57**

Appendix 3

APT8 Simpson Strong-Tie Connector

Date: 04/15/2024 Job Code: 718 Remington Street Page **35** of **57**

Output

AHZ Consulting Engineers, Inc. 111 Rodeo Irvine, CA 92602 (949) 466-1544 Date: 04/15/2024 Job Code: 718 Remington Street Page **36** of **57**

Result							Show Optimized Models: No
Models	Installed Cost	Upert (160) (Ib) ^{1,2}	Total Download (100) (b) ^{1,2}	Lateral Loads (10)12	Material / Coating ⁵	Fastering Method ⁸	Notes ²
en la companya de la comp	Lowreet	ţ		ŝ	080	Ĵ	This product is not load rated, install in pairs
TROST	+30%	920		886	ZMAX®	Naite	suisd ni pesn usym Aluo Aldos spect
Poccie	%89+	2,815			Grey Puint	SDWH Screws	
Ra	%8/+	2,815		2,075	065	NellwSD Scrows	Loads apply only whon used in pairs
Pazie	%2 6 +	1,740	×		Gray Paint	Machine Botts	
B	9496+	1,185		1,825	089	ž	
Tag	+124%				069	Nais	This product is not load rated. Install in pairs
88	+125%	1,565			PC Black	Mechine Both	
[23418	+157%	3,045	-	æ	Gray Paint.	SDMH Screws	
BANG	+172%	1,740			Gray Paint	Machine Bolls	
APST412	+172%	820	•		ZMAXOB with black powder cost	SDMS22312DBB with STN22	Loads apply only when used in pairs. For single part, Installations, use haif the listed values.
APV81412	+172%	820			ZMAX@ with black powder cost	SDWS22312DBB with STW22	Louds apply only when used in pairs. For single part Installations, use haif the listed values.
A 8503	+182%	1,330		1,015	ZMAX® with black powder cost	SDWS22312DBB with STW22	Loads apply only when used in pairs. For single part, installations, use half the islad values.
M Note	+182%	1,330		\$10 [°] 1	ZHANCO with black powder cost	SDWS22312DBB with STW22	Loads apply only when used in pairs. For single part installations, use haif the listed values.
APSTEN2	+199%	505,1		a	ZHAX® with black powder coat	SDWS22312DBB with STN22	Loads apply only when used in pairs. For single part Installations, use haif the listed values.
OIALISAAV	+189%	1,505	*		ZNAXO with black powder cost	SDWS22312DBB with STN22	Louds apply only when used in pairs. For single part, Installations, use haif the listed values.
88	+5389%	2,015		ý	PC Black	Machine Botte	
and a second	+256%	4,045	34.) 	2,640	ZMAX® with black powder coat	Nalig/SD Screws	roads apply only when used in pairs
ESE	+258%	1,480		1,260	ZMAX®	Nails/SD Screws	
BETZEAT	+277%	2,020	6,890	150	2MAX®	Dowel Pins or Machine Botts	Velues shown for standard installed of a continuous beam
HST2	%LOS+	5,220		Ŀ	Gray Paint	Machine Boits	
California	+411%	4,215	18,140	1,855	ZNAX®	Dowei Pins or Machine Botts	Veiues shown for standard installation of a confinuous beam
A APUR	ት417ዓ	2,130		1,426	ZMAX® with black powder coat	SOW622312DBB with STN22	Loads septy only when used in pairs. For single part Installations, use haif the listed values.
ELAY F	+417%	2,130		1,426	ZMAX@ with black powder cost	SDMS22312DBB with STN22	Loads apply only when used in pairs. For single part Installations, use haif the listed values.
HBT3	+438%	7,650		•	Garay Padint	Machine Bolts	
	8						8

Date: 04/15/2024 Job Code: 718 **Remington Street** Page **37** of **57**

(mathematication) (mathematication) <	Nociels	Installed Cost	(160) (15) ^{1,2}	Total Download (100) (10) ^{1,2}	Lateral Loads (Ib) ^{1,2}	Material / Coating ⁶	Fastering Method ⁸	Notes ²
(i)(i	ACIESS	+6/3%	2,815	·	2,075	Statiniess Steel	Nella/SD Screws	Loeds apply only when used in pairs
able with the state of the s	6	+717%	2,585	3	815	PC Bleck	Machine Botts	Loads apply only when used in pairs
0 0	048138	%522/+	5,045		5	PC Black	Masthine Bolts	
a)(a)(a)(b)	8IISH	+738%	15,425			Gray Paint	Mæchine Bolts	
at </td <td>S.I.SH</td> <td>+766%</td> <td>10,550</td> <td></td> <td></td> <td>Grey Paint</td> <td>Machine Boits</td> <td></td>	S.I.SH	+766%	10,550			Grey Paint	Machine Boits	
a.d.(100)<	121241	*6868+	2,585	3	815	089	Mestitine Botts	Loads apply only when used in pairs
(mode) (mod) (mod) (mod) <td>CORE</td> <td>+1,015%</td> <td>5,545</td> <td>33,275</td> <td></td> <td>Grzy Paintt</td> <td>Machine Bolts</td> <td>Load depends on post size</td>	CORE	+1,015%	5,545	33,275		Grzy Paintt	Machine Bolts	Load depends on post size
(m) (m) <td>COORSIBDE2 5</td> <td>+1,022%</td> <td>6,785</td> <td>33,275</td> <td>×</td> <td>Gray Paint</td> <td>SOS Screws</td> <td>Load depends on post size</td>	COORSIBDE2 5	+1,022%	6,785	33,275	×	Gray Paint	SOS Screws	Load depends on post size
(mid) (mid) (mid) (mid) (mid) (mid) (mid) (mid) (mid) (mi	1018HTG	+1,058%	2,670		0/8	DCH	SDWH Screws	Loeds apply only when used in pairs
(1)(13)(13)(13)(13)(14	0-15162	%711,1+	10,085	Ŧ		PC Black	Mastiline Bolts	
Unifold Unifold <t< td=""><td>ä</td><td>+1,259%</td><td>2,565</td><td>а-</td><td>815</td><td>PC Bleck</td><td>Mashine Boits</td><td>Loads apply only when used in pairs</td></t<>	ä	+1,259%	2,565	а-	815	PC Bleck	Mashine Boits	Loads apply only when used in pairs
mtt 1000 1000 1000 1000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 1000000000000 1000000000000000000000000000000000000	2026X.8082.5 MI = 5.5, W2 = 5.5	+1,262%	•1			Available with Gray Paint (stu), PC Black, HDG, or SS. Specify when ordering.	swarps SOS	Laad depends on post size
(1,1) $(1,0)$ $(2,0)$ <	COREPC	+1,308%	5,545	33,275	,	PC Black	Machine Bolts	Load depends on post size
mtt 1,000 1,000 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000	1941	+1,310%	2,585		815	085	Meethine Bolts	Louds apply only when used in pairs
Sector 1 1.80%	201X 11 = 5.5, W2 = 5.5	+1,338%		,	×	Available with Gray Paint (std), PC Black, HDG, or SS. Specify when ordering.	Machine Boths	Load depends on post size
²⁷ Littleter Littleter Littleter <thlittleter< th=""></thlittleter<>	ccaex store 2 &	+1,367%		×		Available with Gray Paint (std), PC Black, HDG, or SS. Spocify when ordering.	SUS SUS	Load depends on post site
Rect 1,510% Usb	227X Y1 = 5.6, W2 = 5.5	+178/1+			,	Available with Gray Paint (etd), PC Blank, HDG, or SS. Specify when ordering.	Meethine Bolts	Load depends on post size
Observation - 1,614 G,705 - 3,214 - 0,00 - 0,275 - 0,00 - 0,00 - 0,000 <th< td=""><td>patenpa</td><td>+1,513%</td><td>5,545</td><td>33,275</td><td></td><td>DCH</td><td>Mastitue Botts</td><td>Loed depends on post size</td></th<>	patenpa	+1,513%	5,545	33,275		DCH	Mastitue Botts	Loed depends on post size
Abstitution	008642132 64100	+1,641%	6,785	33,275	×	DCH	SMALPS SOS	Load depends on post size
Additional additional + J. Solve · · · · · · · · · · · · · · · · · · ·	CCER	+3,311%	4,040	30,250	3	PC Black	Machine Bolts	Load depends on post size
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	ccerss:sdds:5 M = 55, W2 = 5.5	+7,533%	ж.	A	×	Statiniess Steel	swars SUS	Load depends on post size
Rese 5,5,5 5,5,5 5,5,6 Lod diports	cceeese-streg.5	%122'2+	6,785	33,275		Statiniese Steel	SMALPS SUS	Load depends on post size
MX6.5323.600 · · · · · · Load Agents a pot see Load Agents a pot see <thload age<="" td=""><td>States</td><td>Ŧ</td><td>5,545</td><td>33,275</td><td></td><td>Stalniess Steal</td><td>Mashine Bolts</td><td>Load depends on post size</td></thload>	States	Ŧ	5,545	33,275		Stalniess Steal	Mashine Bolts	Load depends on post size
1-65.W2-855 - HDG SCS Street departed at the first sector sCS Street departed at the first sector sCS Street sector sCS Street sector sector sector sector sCS Street sector sect	ccans sus an Da M = 55, W2 = 5.5	ų		3		DOH	SUS SUR	Lined depends on post size
	coexterna: serioc 11 = 6.6, W2 = 6.6	e	4.	<i>i</i> c		HDG	SUS Sorawa	Load depends on poet size

Date: 04/15/2024 Job Code: 718 Remington Street Page **38** of **57**

Appendix 4

MPBZ™ Moment Post Base

Date: 04/15/2024 Job Code: 718 **Remington Street** Page 39 of 57

SIMPSON

Strong-Tie

4x4 post 4" min. sidecover (typ.) 1' stand off - 2' typ 1 71/] over per ACI-318 unles

other

MPB66Z

Bases and Caps

- attach trim material
- Weep hole provided for water drainage

Material: 12 gauge

Finish: ZMAX coating

Installation:

- · Use all specified fasteners; see General Notes.
- Install MPBZ before concrete is placed using embedment level indicators and form board attachment holes.
- · Place post on tabs 1" above top of concrete.
- Install Strong-Drive[®] SDS Heavy-Duty Connector screws, which are supplied with the MPBZ. (Lag screws will not achieve the same load.)
- · Concrete level inside the part must not exceed 1/4" above embedment line to allow for water drainage
- Annual inspection of connectors used in outdoor application is advised. If significant corrosion is apparent or suspected. then the wood, fasteners and connectors should be evaluated by a qualified engineer or inspector

Codes: See p. 13 for Code Reference Key Chart

MPB44Z **Reinforced Concrete Footing Reinforced Concrete Footing** Footing (size and reinforcement) by designer. Footing (size and reinforcement) by designer. Standard hook geometry in accordance Standard hook geometry in accordance with ACI 318 unless noted otherwise. with ACI 318 unless noted otherwise.

А

11½" (min.)

Footing

by designer

These reinforced MPBZ details are available on strongtie.com/mpbz.

SIMPSON

Strong-Tie

Simpson Strong-Tie® Wood Construction Connectors

MPBZ[™]

Moment Post Base (cont.)

These products are available with additional corrosion protection. For more information, see p. 16.

		Din	nensi	ons				Conc Allowable	rete e Loads			Wo DF/SP	od Assemb Allowable I	ly .oads	Rotational	
Model No.	Nominal Column Size		(in.)		Strong-Drive® SDS Screws	Upli	ft	Latera	al F ₁	Mome (ftl	nt M b.)	Download	Download	Moment M	Stiffness (inlb./	Code Ref.
		W1/ W2	D	н		Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	(100)	(160)	(ftlb.) (160)	rad.)	
								Nonreinforc	ed Concre	te						
							Wind an	d Seismic D	esign Cat	egory A&B						
MPB44Z	4x4	31/16	71⁄4	71⁄4	(16) ¼" x 2½"	4,900	3,820	1,750	1,225	1,350	945	6,240	6,410	1,520	1,245,000	
MPB66Z	6x6	51/16	71⁄4	71⁄4	(24) ¼" x 2½"	5,815	5,815	3,435	2,405	2,680	1,875	9,360	10,855	3,730	2,405,000	FL.LA
MPB88Z	8x8	71/16	71⁄4	71⁄4	(36) 1⁄4" x 3"	11,860	9,315	7,200	5,560	4,160	2,910	15,120	17,690	4,560	5,515,000	,
							Sei	ismic Desigr	Category	C-F						
MPB44Z	4x4	31/16	71⁄4	71/4	(16) ¼" x 2½"	4,785	3,350	1,535	1,075	1,180	830	6,240	6,410	1,520	1,245,000	
MPB66Z	6x6	51/16	71⁄4	71/4	(24) 1⁄4" x 2 1⁄2"	5,815	5,815	3,015	2,110	2,055	1,645	9,360	10,855	3,730	2,405,000	IBC,
MPB88Z	8x8	71/16	71⁄4	71⁄4	(36) 1⁄4" x 3"	10,155	8,165	6,965	4,875	3,470	2,550	15,120	17,690	4,560	5,515,000	1 6, 67
	1.							Reinforced	i Concrete		30		W. 16			74
							Wind an	d Seismic D	esign Cat	egory A&B						
MPB44Z	4x4	31/16	71⁄4	71⁄4	(16) ¼" x 2½"	4,900	3,820	1,750	1,225	1,520	1,520	6,240	6,410	1,520	1,245,000	
MPB66Z	6x6	51/16	71/4	71/4	(24) 1⁄4" x 21⁄2"	5,815	5,815	3,435	2,405	3,730	3,190	9,360	10,855	3,730	2,405,000	IBC,
MPB88Z	8x8	71/16	71⁄4	71⁄4	(36) ¼" x 3"	11,860	9,315	7,200	5,560	4,560	4,560	15,120	17,690	4,560	5,515,000	1 2, 27
							Sei	smic Desigr	Category	C-F						~
MPB44Z	4x4	31/16	71⁄4	71⁄4	(16) ¹ /4" x 2 ¹ /2"	4,785	3,350	1,535	1,075	1,520	1,520	6,240	6,410	1,520	1,245,000	
MPB66Z	6x6	51/16	71⁄4	71/4	(24) ¼" x 2½"	5,815	5,815	3,015	2,110	3,350	2,795	9,360	10,855	3,730	2,405,000	IBC,
MPB88Z	8x8	71/16	71/4	71/4	(36) 1/4" x 3"	10,155	8,165	6,965	4,875	4,560	4,560	15,120	17,690	4,560	5,515,000	1 2, 27

2. 3

Loads may not be increased for duration of load. Higher download can be achieved by solidly packing grout in the 1* standoff area before installation of the post. Allowable download shall be based on either the wood post design or the concrete design calculated per code. Concrete shall have a minimum compressive strength of fr = 2,500 psi. Tabulated rotational stiffness accounts for the rotation of the base assembly attributable to deflection of the connector, fastener slip, and post deformation. Designer must account for additional deflection attributable to bending of the post. Multiply seismic and wind ASD uplift and lateral load values by 1.43 or 1.67, respectively, to obtain LRFD capacities. In accordance with IBC, Section 1613.1, detached one- and two-family dwellings in Seismic Design Category (SDC) C may use "Wind and SDC A&B" allowable loads. 4. 5.

6.

allowable loads. 7. Foundation dimensions are for anchorage only. Foundation design (size and reinforcement) by designer. 8. Allowable load shall be the lesser of the wood assembly or concrete allowable load. 9. For loading simultaneously in more than one direction, the allowable load must be evaluated using the following equation: (Design Uplift / Allowable Uplift, or Design Download / Allowable Download) + (Design Moment / Allowable Moment) + (Design Lateral / Allowable Lateral) ≤ 1.0. 10. To account for shrinkage up to 3%, multiply rotational stiffness by 0.75. Reduction may be linearly interpolated for shrinkage less than 3%. 11. Tabulated load values may be used for rough sawn lumber or larger size posts without reduction factors. Rough-size and larger-size posts shall be planed uniformly on all four sides such that centerline of post is concentric with the center line of MPBZ.

Reinforced Concrete Footing

Footing (size and reinforcement) by designer. Standard hook geometry in accordance with ACI 318 unless noted otherwise.

Date: 04/15/2024 Job Code: 718 Remington Street Page **41** of **57**

Appendix 5

ENERCALC Design Report

Date: 04/15/2024 Job Code: 718 Remington Street Page **42** of **57**

AHZ Consulting Enginee 718 Remington FOUNDA	rs Inc. ATION DESIGN	I		Project Title: Engineer: Project ID: Project Descr:			
						Printed: 14 APR	2024, 10:09PM
Concrete Colu	mn				Software copyrig	F ht ENERCALC INC 1983-2020	ile: Case1.ec6 Build: 12 20 8 24
Lic. # : KW-06012537					oonware copying	AHZ Consu	Iting Enginee
Code References	e Footing Stru		013 ASCE 7-10				
Load Combinations	Used · ASC	F 7-16	010, AOOL 1-10				
General Information		2.10					
fa : Concrete 28 day of	tronath -	3.0 kci		Overall Column Height	_	2.0.ft	
F =	rengun – = 0	3.0 KSI 3.122.02 ksi		End Fixity	Fon Pinned	Bottom Fixed	
Density		150.0 pcf		Brace condition for deflect	ion (buckling)	along columns :	
β	=	0.850		X-X (width) axis :	ion (bucking)	along columns .	
fy - Main Rebar	=	60.0 ksi		Unbraced Length for	buckling ABC	OUT Y-Y Axis = 2.0 ft. K =	0.80
E - Main Rebar	= 2	29,000.0 ksi		Y-Y (depth) axis :			
Allow. Reinforcing Limi	ts AST.	M A615 Bars Used		Unbraced Length for	r buckling ABC	DUT X-X Axis = 2.0 ft, K =	0.80
Min. Reinf.	=	0.50 %					
Max. Reini.	=	8.0 %					
Column Cross Sect	ion						
Column Dimensions	16.0in S	quare Column. C	Column Edge to		-	16.0 in	
Building Building	Rebar F	dae Cover = 3.0	n			9	
	rtobul L	ugo octor o.o.					
					•**	•a5 •a5	
Column Reinforcina :	4 - #5 ba	ars @ corners 1	- #5 bars top &				
ç	bottom b	between corner b	ars, 1 - #5 bars left		-X •45	Loose as	
	& right b	etween corner b	ars				
					•25	#5 #5	
Applied Loads				Entered loads are	factored per	load combinations spe	cified by use
Column self weight in AXIAL LOADS Axial Load at 2.0 ft BENDING LOADS Lat. Point Load at (Moment acting abo	cluded : 533.33 above base, D 0.0 ft creating N out Y-Y axisat C	b lbs * Dead Load F = 0.7350, S = 2.1 Mx-x, D = 0.080, S 0.0 ft, D = 0.720, S	Factor 0, W = 1.20 k = 0.250, W = 0.140 k = 2.250, W = 1.260 k-f	t			
DESIGN SUMMARY							
Load Combination	ua haar	+1.20D+1.6	0S+0.50W	Maximum SERVICE Loa	d Reactions		0.01
Location of max.abo	ve base		1.987 π	Top along Y-Y	0.0 K	Bottom along Y-Y	0.0 K
Maximum Stress Ra	tio		0.013:1	Top along X-X	0.0 K	Bottom along X-X	0.0 K
Ratio = (Pu^2+Mu^2	182 k	+Philvin^2)^.5	113 5114				
Pu =	.402 K	φ	413.044 K	Maximum SERVICE Loa	d Deflections		
Mu-x =	0.0 k-ft	φ * Mn-x =	-0.1976 k-ft	Along Y-Y	0.0 in at	0.0 ft above base	i.
Mu-y =	0.0 k-ft	Ψ * Mn-y =	-0.07809 k-ft	for load combination	on :		
Mu Angle =	0.0 deg			Along X-X	0.0 in at	0.0 ft above base	i.
Mu at Angle =	0.0 k-ft	φMn at Angle =	0.6409 k-ft	for load combination	on :		
Pn & Mn values locate	d at Pu-Mu veo	ctor intersection wi	th capacity curve				
Column Capacities				General Section Informa	ation $. \phi =$	$0.650 \beta = 0.850$	$\theta = 0.8$
Pnmax : Nominal Max	k. Compressive	Axial Capacity	795.28 k	ρ : % Reinforcing	0.9688 %	6 Rebar % Ok	
Pnmin : Nominal Min.	Tension Axial	Capacity	k	Reinforcing Area	2.480 in	^2	
φ Pn, max : Usable φ Pn, min : Usable 1	Compressive A Tension Axial C	xial Capacity apacity	413.544 k k	Concrete Area	256.0 in	^2	

Date: 04/15/2024 Job Code: 718 Remington Street Page **43** of **57**

AHZ Consulting Engineers Inc.

718 Remington FOUNDATION DESIGN

	Printed: 14 APR 2024, 10:09PN
Concrete Column	File: Case1.ec6
Concrete Column	Software copyright ENERCALC, INC. 1983-2020, Build: 12.20.8.24
Lic. # : KW-06012537	AHZ Consulting Engineers
DESCRIPTION: Pile Footing Structural	

Governing Load Combination	Results													
Governing Factored	Momen	,t	Dist from	Axi	al Load			В	ending Ana	lysis	k-ft			
Load Combination	v v	vv	booo ft	k	* Dn	e v	≈v*Muv	ev	Sv * Mun	Alph	a (dog)	s M	Ut	Ization
.1.10D	A-A	1-1	Dase II	FU 4.70	φ ΓΠ	0 ^	0 × 1110X	0,	Oy Wuy	Alph		0 111		Railo
+1.40D	Actual		1.99	1.78	413.54	1.000	0.00				0.000	0.0	0 0.64	0.004
+1.20D	Actual		1.99	1.52	413.04	1.000	0.00				0.000	0.0	0 0.04	0.004
+1.20D+0.505	Actual		1.99	2.57	413.54	1.000	0.00				0.000	0.0	0 0.64	0.006
+1.20D+0.50VV	Actual		1.99	2.12	413.34	1.000	0.00				0.000	0.0	0 0.04	0.005
+1.20D+1.60S	Actual		1.99	4.88	413.54	1.000	0.00				0.000	0.0	0 0.64	0.012
+1.200+1.005+0.5000	Actual		1.99	5.48	413.54	1.000	0.00				0.000	0.0	0 0.04	0.013
+1.20D+0	Actual		1.99	2.12	413.54	1.000	0.00				0.000	0.0	0 0.04	0.007
+1.20D+0.50S+W	Actual		1.99	3.11	413.54	1.000	0.00				0.000	0.0	0 0.64	0.009
+0.90D+W	Actual		1.99	2.34	413.54	1.000	0.00				0.000	0.0	0 0.64	0.006
+1.20D+0.20S	Actual		1.99	1.94	413.54	1.000	0.00				0.000	0.0	0 0.64	0.005
+0.90D	Actual		1.99	1.14	413.54	1.000	0.00				0.000	0.0	0 0.64	0.003
Maximum Reactions									N	ote: O	nly non-	zero re	eactions are	listed.
	X	X Axis	Reaction	k Y	-Y Axis R	eaction	Axial Re	action	My -	End Mo	oments	k-ft	Mx - End Mo	ments
Load Combination	@	Base	@ 1 op	(0) Base	@ lop	@ B	ase	@ B	ase	@ lop		@ Base	@ lop
D Only					12194012100	10.0000		1.268		0.000				
+D+S					0.000	0.000		3.368		0.000				
+D+0.750S								2.843		0.000				
+D+0.60W								1.988		0.000				
+D+0.450W					0.000	0.000		1.808		0.000				
+D+0.7505+0.450W					0.000	0.000		5.585		0.000				
+0.60D+0.0000								0.761		0.000				
S Only								2 100		0.000				
W Only								1 200		0.000				
Maximum Moment Reactions								1.200	N	ote: O	nly non-	zero re	eactions are	listed.
			Mome	ent About	t X-X Axis				Ν	/loment	t About Y-Y	Y Axis		
Load Combination			@ Base	9	@ To	р			a	Base	0	🕽 Тор		
D Only			0.	000		k-ft							k-ft	
+D+S			0.	000		k-ft							k-ft	
+D+0.750S			0.	000		K-ft							K-ft	
+D+0.0077 +D+0.450W			0.	000		k-ft							k-ft	
+D+0.750S+0.450W			0.	000		k-ft							k-ft	
+0.60D+0.60W			0.	000		k-ft							k-ft	
+0.60D			0.	000		k-ft							k-ft	
S Only			0.	000		k-ft							k-ft	
W Only			0.	000		k-ft							k-tt	
Maximum Deflections for Load	d Combina	ation	S		1520.5111									
Load Combination	M	ax. X-	X Deflection	Dista	ince	4	Max. Y-Y De	eflection	n Dist	ance	0			
D Only		0.000	00 in	0.00	00 ft		0.00	0 in	0	.000	tt			
+U+S		0.000	in in	0.00	JU 11		0.00		0	.000	IL A			
+0+0./005		0.000	in in	0.00	JU II 10 ft		0.00			.000	1(#			
+D+0.00W		0.000	in in	0.00	0 IL		0.00		0	000	11 ff			
+D+0 750S+0 450W		0.000	10 in	0.00	10 ft		0.00	0 III 0 in		000	ft			
+0.60D+0.60W		0.000	0 in	0.00	10 ft		0.00	0 in	. 0	000	ft			
+0.60D		0.000	00 in	0.00	10 ft		0.00	0 in		000	ft			
S Only		0.000	00 in	0.00	00 ft		0.00	0 in		.000	ft			
W Only		0.000	00 in	0.00	00 ft		0.00	0 in	0	.000	ft			

Date: 04/15/2024 Job Code: 718 Remington Street Page **44** of **57**

AHZ Consulting Engineers Inc.

718 Remington FOUNDATION DESIGN

Date: 04/15/2024 Job Code: 718 Remington Street Page **45** of **57**

AHZ Consulting Engineers Inc.

718 Remington FOUNDATION DESIGN

Date: 04/15/2024 Job Code: 718 Remington Street Page **46** of **57**

AHZ Consulting Engineers Inc.

718 Remington FOUNDATION DESIGN

Date: 04/15/2024 Job Code: 718 Remington Street Page **47** of **57**

AHZ Consulting Engineers Inc.

718 Remington FOUNDATION DESIGN

Date: 04/15/2024 Job Code: 718 Remington Street Page **48** of **57**

AHZ Consulting Engineers Inc. 718 Remington FOUNDATION DESIGN			Pro Eng Pro Pro	ject Title: jineer: ject ID: ject Descr:			
						Printed: 1	14 APR 2024, 9:591
General Footing					Software convright ENE	RCALC INC 19	File: Case1.ec6 83-2020 Build: 12 20 8 2
Lic. # : KW-06012537					contrate copyright Enter	AHZ	Consulting Engine
DESCRIPTION: Solar Pergola							
Code References							
Calculations per ACI 318-11, IBC 2	012, CBC 2	013, ASCE 7-	10				
Load Combinations Used : ASCE 7	-16						
General Information							
Material Properties	-	3 0 kei	Soil De	sign Values		-	1 50 kef
fy : Rebar Yield	=	60.0 ksi	Increa	se Bearing By Foo	ting Weight	=	No
Éc : Concrete Elastic Modulus	= 3	3,122.02 ksi	Soil P	assive Resistance	(for Sliding)	=	250.0 pcf
o Values Elexure	-	0.90	501/0	oncrete Friction G	реп.	=	0.30
Shear	=	0.750	Increase	s based on footi	ng Depth		
Analysis Settings			Footin	g base depth belo	w soil surface	=	2.50 ft
Min Steel % Bending Reint. Min Allow % Temp Reinf		= 0.0018	Allow	press. increase pe	r foot of depth	=	ksf
Min. Overturning Safety Factor		= 1.	0:1	len looung base is	Delow	-	n
Min. Sliding Safety Factor		= 1.	0:1 Increase	s based on footi	ng plan dimension	1	
Add Ftg Wt for Soil Pressure	are	: Ye	S Allowa	able pressure incre	ase per toot of dep	=	ksf
Add Pedestal Wt for Soil Pressure	ai 5	: Ye	s when	max. length or wid	th is greater than		A.
Use Pedestal wt for stability, mom & sh	near	: Ye	S			=	π
Dimensions							
Width parallel to X-X Axis =	:	3.50 ft					
Length parallel to Z-Z Axis =	:	3.50 ft			z		
Footing Thickness =		12.0 in		-		_	
					1'-4"		
B. L. L. L.			x			x	
prince parallel to X-X Axis =		16.0 in		.9. 1			
pz : parallel to Z-Z Axis		16.0 in					
Height Rebar Centerline to Edge of Concrete		24.0 in		-6-1		h	
at Bottom of footing =		3.0 in					
						dge Di	
Reinforcing				- 1'	9" Z 3'-6"	ŭ.	
Bars parallel to X-X Axis							
Number of Bars	щ	4.0	100000			1700 3000	
Remove an allel to 7-7 Avie	#	0	ALINALISANS DE CO		1111122201010	CELLER COLOR	
Number of Bars =		4					
Reinforcing Bar Size =	#	6					
Direction Requiring Closer Separation	.4.4.∠)			and the second			
Succession requiring blober oppuration		n/a	4-#8	bes	-	2-11.105	
# Bars required within zone		n/a	and the second second		In the second		Sector in the sector is a se
#Bars required on each side of zone		n/a	X-X Section Lo	ang a *2		Z-Z Bestier Losing	a.4
Applied Loads							
	D	Lr	L	S	W	Е	Н
P : Column Load =	0.7350			2.10	1.20		k
Ob. Overburden =	0 700			0.050	1.060		KST
M-zz =	0.720			2.250	1.260		k-tt k-ft
V-x =	0.080			0.250	0.140		k
V-z =							k

Date: 04/15/2024 Job Code: 718 **Remington Street** Page 49 of 57

AHZ Consulting Engineers Inc.

718 Remington FOUNDATION DESIGN

Project Title: Engineer: Project ID: Project Descr:

					Printed: 14 APR 2024, 9:59
General	Footing			21 A	File: Case1.ec6
ocherur	ooung			Software	copyright ENERCALC, INC. 1983-2020, Build 12.20.8.2
Lic. # : KW-060	12537				AHZ Consulting Engine
DESCRIPTIC	DN: Solar Pe	rgola			
DESIGN SU	MMARY				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.740	Soil Bearing	1.110 ksf	1.50 ksf	+D+0.750S+0.450W
PASS	4.039	Overturning - X-X	2.970 k-ft	11.996 k-ft	+D+S
PASS	12.117	Overturning - Z-Z	0.990 k-ft	11.996 k-ft	+D+S
PASS	11.531	Sliding - X-X	0.3305 k	3.811 k	+D+0.750S+0.450W
PASS	n/a	Sliding - 7-7	0.0 k	0.0 k	No Sliding

PASS	11.531	Sliding - X-X	0.3305 K	3.811 K	+D+0./50S+0.450W	
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding	
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift	
PASS	0.04886	Z Flexure (+X)	0.9406 k-ft/ft	19.250 k-ft/ft	+1.20D+1.60S+0.50W	
PASS	0.03637	Z Flexure (-X)	0.7001 k-ft/ft	19.250 k-ft/ft	+1.20D+1.60S+0.50W	
PASS	0.04972	X Flexure (+Z)	0.9571 k-ft/ft	19.250 k-ft/ft	+1.20D+1.60S+0.50W	
PASS	0.03637	X Flexure (-Z)	0.7001 k-ft/ft	19.250 k-ft/ft	+1.20D+1.60S+0.50W	
PASS	0.06431	1-way Shear (+X)	5.284 psi	82.158 psi	+1.20D+1.60S+0.50W	
PASS	0.04597	1-way Shear (-X)	3.777 psi	82.158 psi	+1.20D+1.60S+0.50W	
PASS	0.06763	1-way Shear (+Z)	5.556 psi	82.158 psi	+1.20D+1.60S+0.50W	
PASS	0.01851	1-way Shear (-Z)	1.521 psi	82.158 psi	+1.40D	
PASS	0.04190	2-way Punching	6.884 psi	164.317 psi	+1.20D+1.60S+0.50W	

Detailed Results

Rotation Axis &		Xecc	Zecc	Actua	Soil Bearing	Stress @ Loc	ation	Actual / Allow
Load Combination	Gross Allowable	(in)	Bottom Left	Top Left	Top Right	Bottom Right	Ratio
, D Only								0.000
, 71.6 deg CCW	1.50	0.6057	1.817	0.4546	0.2551	0.3216	0.5211	0.347
, +D+S								0.000
, 71.6 deg CCW	1.50	1.733	5.199	0.8339	0.01094	0.2853	1.108	0.739
, +D+0.750S								0.000
, 71.6 deg CCW	1.50	1.521	4.564	0.7391	0.07199	0.2944	0.9614	0.641
, +D+0.60W								0.000
, 71.6 deg CCW	1.50	1.078	3.235	0.5832	0.1743	0.3106	0.7196	0.480
, +D+0.450W								0.000
, 71.6 deg CCW	1.50	0.9723	2.917	0.5511	0.1945	0.3134	0.670	0.447
, +D+0.750S+0.450W								0.000
, 71.6 deg CCW	1.50	1.732	5.196	0.8355	0.01134	0.2861	1.110	0.740
, +0.60D+0.60W								0.000
. 71.6 deg CCW	1.50	1.330	3.990	0.4014	0.07221	0.1819	0.5111	0.341
, +0.60D								0.000
, 71.6 deg CCW	1.50	0.6057	1.817	0.2728	0.1531	0.1930	0.3127	0.209
Overturning Stability								

Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
X-X, D Only	0.720 k-ft	8.321 k-ft	11.557	OK
X-X, +D+S	2.970 k-ft	11.996 k-ft	4.039	OK
X-X. +D+0.750S	2.408 k-ft	11.077 k-ft	4.601	OK
X-X, +D+0.60W	1.476 k-ft	9.581 k-ft	6.491	OK
X-X, +D+0.450W	1.287 k-ft	9.266 k-ft	7.20	OK
X-X, +D+0,750S+0,450W	2.975 k-ft	12.022 k-ft	4.042	OK
X-X, +0.60D+0.60W	1.188 k-ft	6.252 k-ft	5.263	OK
X-X, +0.60D	0.4320 k-ft	4.992 k-ft	11.557	OK
Z-Z, D Only	0.240 k-ft	8.321 k-ft	34.670	OK
Z-Z, +D+S	0.990 k-ft	11.996 k-ft	12.117	OK
Z-Z, +D+0.750S	0.8025 k-ft	11.077 k-ft	13.803	OK
Z-Z, +D+0.60W	0.4920 k-ft	9.581 k-ft	19.473	OK
Z-Z, +D+0.450W	0.4290 k-ft	9.266 k-ft	21.599	OK
Z-Z, +D+0.750S+0.450W	0.9915 k-ft	12.022 k-ft	12.125	OK
Z-Z, +0.60D+0.60W	0.3960 k-ft	6.252 k-ft	15.789	OK
Z-Z, +0.60D	0.1440 k-ft	4.992 k-ft	34.670	OK

Date: 04/15/2024 Job Code: 718 Remington Street Page **50** of **57**

AHZ Consulting Engineers Inc.

718 Remington FOUNDATION DESIGN

				i ioje	CL DESCI.			
							Printed: 14 APF	R 2024, 9:59PM
General Footing					Sc	oftware copyright EN	ERCALC, INC. 1983-2020	Build: 12.20.8.2
DESCRIPTION: Solar Pergola							AHZ Consi	ulting Engineer
DEGORI HON. Coldi Forgola								
Sliding Stability							A	ll units k
Force Application Axis Load Combination		S	liding Force		Resisting F	orce S	tability Ratio	Status
X-X, D Only			0.080 k	(3.	176 k	39.705	OK
X-X, +D+S X-X, +D+0.750S			0.330 k	ς ς	3.	.649 k	13.641	OK
X-X, +D+0.60W			0.1640 k	(3.	392 k	20.685	OK
X-X, +D+0.450W			0.1430 k	(3.	.338 k	23.346	OK
X-X, +D+0.750S+0.450W X-X, +0.60D+0.60W			0.3305 k	(3.	822 k	21.378	OK
X-X, +0.60D			0.0480 k	((2.	.606 k	54.289	OK
Z-Z, D Only			0.0 k	ζ	3.	.176 k	No Sliding	OK
Z-Z, +D+S 7-7 +D+0 7508			0.0 k	(3.	806 K	No Sliding	OK
Z-Z, +D+0.60W			0.0 k	, ,	3.	.392 k	No Sliding	OK
Z-Z, +D+0.450W			0.0 k	(3.	338 k	No Sliding	OK
Z-Z, +D+0.750S+0.450W			0.0 k	(3.	.811 k	No Sliding	OK
Z-Z, +0.60D			0.0 k	C C	2.	.606 k	No Sliding	OK
Flexure Axis & Load Combination	Mu k-ft	Side	Tension	As Req'd	Gvrn. As	Actual As	Phi*Mn	Status
X-X +1 40D	0 4212	+7	Bottom	0 2592	Min Temp %	0.5029	19 250	OK
X-X, +1.40D	0.3726	-Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D	0.3610	+Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D X-X, +1.20D+0.50S	0.3193	-2	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+0.50S	0.4173	-Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+0.50W	0.4469	+Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+0.50W	0.3/48	-Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X +1.20D+1.60S	0.6055	-7	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+1.60S+0.50W	0.9571	+Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+1.60S+0.50W	0.7001	-Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+W X-X, +1.20D+W	0.5327	+2	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+0.50S+W	0.6850	+Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+0.50S+W	0.5283	- <u>Z</u>	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +0.90D+W	0.4425	+Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X +1 20D+0 20S	0.3304	+7	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +1.20D+0.20S	0.3585	-Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
X-X, +0.90D	0.2708	+Z	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
7-7 +1.90D	0.2395	-Z -X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.40D	0.4181	+X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D	0.3193	-X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D Z-Z, +1.20D+0.50S	0.3584	+X -X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D+0.50S	0.5072	+X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D+0.50W	0.3748	-X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D+0.50W	0.4423	+X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D+1.60S	0.8510	-^ +X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D+1.60S+0.50W	0.7001	-X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D+1.60S+0.50W	0.9406	+X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D+W 7-7 +1.20D+W	0.4303	-X +X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D+0.50S+W	0.5283	-X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D+0.50S+W	0.6751	+X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
2-2, +0.90D+W 7-7, +0.90D+W	0.3504	-X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +1.20D+0.20S	0.3585	-X	Bottom	0.2592	Min Temp %	0.5029	19,250	OK
Z-Z, +1.20D+0.20S	0.4179	+X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK
Z-Z, +0.90D	0.2395	-X	Bottom	0.2592	Min Temp %	0.5029	19.250	OK

Date: 04/15/2024 Job Code: 718 Remington Street Page **51** of **57**

AHZ Consulting Engineers Inc.

718 Remington FOUNDATION DESIGN

General Footing						Coffwara convriat		File: Cas	se1.ec6
Lic. # : KW-06012537						Sonware copyrigi	AHZ	Consulting	Engineers
DESCRIPTION: Solar Pergola	-								
Footing Flexure									
Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. A in^2	s Actual in^2	As Phi*N k-ft	In	Status
Z-Z, +0.90D One Way Shear	0.2688	+X	Bottom	0.2592	Min Temp 9	% 0.502	9 19	.250	OK
Load Combination	Vu @ -X	Vu @	+X Vu (@Z Vu	ı@+Z	Vu:Max	Phi Vn Vu	/ Phi*Vn	Status
+1.40D	2.04 p	si	2.33 psi	1.52 psi	2.38 psi	2.38 psi	82.16 psi	0.03	OK
+1.20D	1.75 p	si	1.99 psi	1.30 psi	2.04 psi	2.04 psi	82.16 psi	0.02	OK
+1.20D+0.50S	2.27 p	si	2.83 psi	1.25 psi	2.93 psi	2.93 psi	82.16 psi	0.04	OK
+1.20D+0.50W	2.05 p	si	2.47 psi	1.28 psi	2.54 psi	2.54 psi	82.16 psi	0.03	OK
+1.20D+1.60S	3.48 p	si	4.78 psi	1.03 psi	5.02 psi	5.02 psi	82.16 psi	0.06	OK
+1.20D+1.60S+0.50W	3.78 p	si	5.28 psi	0.99 psi	5.56 psi	5.56 psi	82.16 psi	0.07	OK
+1.20D+W	2.34 p	si	2.94 psi	1.25 psi	3.05 psi	3.05 psi	82.16 psi	0.04	OK
+1.20D+0.50S+W	2.86 p	si	3.78 psi	1.19 psi	3.95 psi	3.95 psi	82.16 psi	0.05	OK
+0.90D+W	1.90 p	si	2.44 psi	0.92 psi	2.54 psi	2.54 psi	82.16 psi	0.03	OK
+1.20D+0.20S	1.96 p	si	2.33 psi	1.28 psi	2.40 psi	2.40 psi	82.16 psi	0.03	OK
+0.90D	1.31 p	si	1.50 psi	0.98 psi	1.53 psi	1.53 psi	82.16 psi	0.02	OK
Two-Way "Punching" Shear								All units	k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status

Load Combination	Vu	Phi*Vn	Vu / Phi*Vn	Status
+1.40D	4.73 psi	164.32psi	0.02881	OK
+1.20D	4.06 psi	164.32psi	0.02469	OK
+1.20D+0.50S	4.80 psi	164.32psi	0.02924	OK
+1.20D+0.50W	4.48 psi	164.32psi	0.02729	OK
+1.20D+1.60S	6.45 psi	164.32psi	0.03925	OK
+1.20D+1.60S+0.50W	6.88 psi	164.32psi	0.0419	OK
+1.20D+W	4.91 psi	164.32psi	0.02989	OK
+1.20D+0.50S+W	5.66 psi	164.32psi	0.03443	OK
+0.90D+W	3.90 psi	164.32psi	0.02371	OK
+1.20D+0.20S	4.36 psi	164.32psi	0.02651	OK
+0.90D	3.04 psi	164.32psi	0.01852	OK

Date: 04/15/2024 Job Code: 718 Remington Street Page **52** of **57**

Appendix 6

Strong-Bolt Machine Bolt

Date: 04/15/2024 Job Code: 718 Remington Street Page **53** of **57**

Anchor Designer™ Software Version 3.2.2311.2

Company:	AHZ Consulting Engineers, In	Date:	4/8/2024
Engineer:		Page:	1/5
Project:	718 Remington Street		
Address:			
Phone:			
E-mail:			

1.Project information

Project description: Location: Fastening description: 2. Input Data & Anchor Parameters General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Concrete screw Material: Carbon Steel Diameter (inch): 0.500 Nominal Embedment depth (inch): 3.250 Effective Embedment depth, h_{ef} (inch): 2.350 Code report: ICC-ES ESR-2713 Anchor ductility: No h_{min} (inch): 5.00 c_{de} (inch): 3.56 Cerein (inch): 1.75 S_{min} (inch): 3.00

Recommended Anchor

Anchor Name: Titen HD® - 1/2"Ø Titen HD, hnom:3.25" (83mm) Code Report: ICC-ES ESR-2713

Base Material

Concrete: Normal-weight Concrete: Normal-weight Concrete: Tracked Compressive strength, fc (psi): 4000 $\Psi_{e,v}$: 1.0 Reinforcement condition: B tension, B shear Supplemental edge reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore do requirement: Not applicable Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 5.00 x 5.00 x 0.25

Date: 04/15/2024 Job Code: 718 Remington Street Page **54** of **57**

Anchor Designer™ Software Version 3.2.2311.2

Company:	AHZ Consulting Engineers, In	Date:	4/8/2024
Engineer:		Page:	2/5
Project:	718 Remington Street		
Address:			
Phone:			
E-mail:			

Load and Geometry Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: No Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Strength level loads:

Nua [lb]: 2940
Vuax [lb]: 0
Vuay [lb]: 0
Mux [ft-lb]: 0
Muy [ft-lb]: 0
Muz [ft-lb]: 0

<Figure 1>

Date: 04/15/2024 Job Code: 718 Remington Street Page **55** of **57**

Date: 04/15/2024 Job Code: 718 Remington Street Page **56** of **57**

	MPSON Anchor Designer TM		company.	Anz consulting	Engineero, m	Duio.			
	An	Chor Desig	Juei		Engineer:			Page:	4/5
Strong	ong-Tie Sonware			Project:	718 Remington	Street			
	Vers	sion 3.2.2311.2			Address:				
				_	Phone:				
					E-mail:				
3. Resulti	ng Anchor Fo	orces							
Anchor		Tension load,	ŝ	Shear loa	id x,	Shear load y,	S	hear load co	mbined,
		N _{ua} (Ib)	<u>`</u>	√ _{uax} (lb)		V _{uay} (Ib)	7((Vuax) ² +(Vuay) ²	² (lb)
1		735.7		0.0		0.0	0	.0	
2		735.7		0.0		0.0	0	.0	
3		1468.6		0.0		0.0	0	.0	
Sum		2940.0		0.0		0.0	0	.0	
Resultant c Eccentricity	of resultant te	ension forces in	x-axis, e' _{Nx} (ir y-axis, e' _{Ny} (ir	ich): 0.00)				
Resultant c Eccentricity Eccentricity 4. Steel St	of resultant te	nte (1). C ansion forces in ansion forces in chor in Tensio	x-axis, e' _{Nx} (ir y-axis, e' _{Ny} (ir on (Sec. 17.4	nch): 0.00 nch): 0.50 <u>1)</u>			01	X	2
Resultant o Eccentricity Eccentricity 4. Steel St Nsa (Ib)	of resultant is of resultant te rength of An-	nce (µ). C mission forces in ension forces in <u>ension forces in</u> <u>chor in Tensic</u> ϕN_{sa} (lb)	x-axis, e' _{Nx} (ir y-axis, e' _{Ny} (ir on <u>(Sec. 17.4</u>	nch): 0.00 nch): 0.50 <u>.1)</u>	1		01	×	2
Resultant o Eccentricity Eccentricity A. Steel St N _{sa} (Ib) 20130	rength of And v of resultant te v of resultant te v of resultant te	nte (b), 0 ension forces in ension forces in <u>chor in Tensio</u> <i>φN</i> _{sn} (lb) 13085	x-axis, e' _{Nx} (ir y-axis, e' _{Ny} (ir on (Sec. 17.4.	ich): 0.00 ich): 0.50 <u>.1)</u>			01	X	2
Resultant c Eccentricity 4. Steel St Nea (lb) 20130 5. Concret Nb = kc λa √f	v of resultant te	chor in Tensic ension forces in ension forces in <i>philo</i> 13085 Strength of An 4.2.2a)	x-axis, e' _{Nx} (ir y-axis, e' _{Ny} (ir on <u>(Sec. 17.4</u> 	ich): 0.00 ich): 0.50 <u>.1)</u> ion (Sec) 		01	×	2
Resultant c Eccentricity 4. Steel St Noa (lb) 20130 5. Concret No = kcÅa √ kc	$\frac{d}{d} = \frac{d}{d} = \frac{d}$	chor in Tensio ension forces in ension forces in <i>philo</i> <i>(Nan (Ib)</i> 13085 Strength of An- 4.2.2a) <i>fc</i> (psi)	x-axis, e' _{Nx} (ir y-axis, e' _{Ny} (ir on (Sec. 17.4. 	ich): 0.00 ich): 0.50 <u>.1)</u> ion (Sec)) : . 17.4.2) N₀ (Ib)		01	×	2
Resultant c Eccentricity 4. Steel St Nea (lb) 20130 5. Concret $N_b = k_c \lambda_a \sqrt{f} \frac{k_c}{17.0}$	rength of Ang φ 0.65 te Breakout S λa 1.00	chor in Tensio ension forces in ϕN_{sc} (lb) 13085 Strength of An- 4.2.2a) f_c (psi) 4000	x-axis, e' _{Nx} (ir y-axis, e' _{Ny} (ir on (Sec. 17.4 <u>chor in Tens</u> <u>her (in)</u> 2.350	ich): 0.00 ich): 0.50 .1) ion (Sec) ; .: 17.4.2) № (lb) 3873	_	01	×	<u></u> 2
Resultant c Eccentricity Eccentricity 4. Steel St $\frac{N_{sa}}{20130}$ 5. Concret $N_b = k_c \lambda_a \sqrt{f} \frac{k_c}{17.0}$ $\phi N_{cbg} = \phi$ (A	rength of Anu φ 0.65 te Breakout S λa 1.00 μο / Anu yes, N	chor in Tensio ension forces in ension forces in φN _{sn} (lb) 13085 Strength of And 4.2.2a) f _c (psi) 4000 Veal, Ve., Ve., NVe., NVe.	x-axis, e' _{Nx} (ir y-axis, e' _{Ny} (ir on (Sec. 17.4 <u>chor in Tens</u> <u>her (in)</u> 2.350 . (Sec. 17.3.1	nch): 0.00 nch): 0.50 ion (Sec & Eq. 17.) } <u>17.4.2)</u> <u>N⊳ (lb)</u> 3873 4.2.1b)	_		×	2
Resultant c Eccentricity Eccentricity 4. Steel St N_{sa} (lb) 20130 5. Concret $N_b = k_c \lambda_a \sqrt{f}$ k_c 17.0 $\phi N_{cbg} = \phi$ (A A_{hc} (in ²)	φ φ 0.65 0.65 te Breakout S φ 1.00 1.00 Noc (in ²) Yee, N	chor in Tensic ension forces in ension forces in ϕN_{se} (lb) 13085 Strength of An- 4.2.2a) f_c (psi) 4000 $Y_{ed,N} Y_{c,N} Y_{cp,NNL}$	x-axis, e' _{Nx} (ir y-axis, e' _{Ny} (ir on (Sec. 17.4, 	nch): 0.00 nch): 0.50 <u>.1)</u> ion (Sec & Eq. 17. Ψ _{od.N}) . 17.4.2) N₀ (lb) 3873 4.2.1b) <i>Ψ</i> _{cN}	— 	1 1 	*	2 <i>ΦNetg</i> (Ib)

11. Results

Interaction of Tensile and Shear Forces (Sec. 17.6)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1469	13085	0.11	Pass
Concrete breakout	2940	4083	0.72	Pass (Governs)

1/2"Ø Titen HD, hnom:3.25" (83mm) meets the selected design criteria.

Date: 04/15/2024 Job Code: 718 Remington Street Page **57** of **57**

Company:	AHZ Consulting Engineers, In	Date:	4/8/2024
Engineer:		Page:	5/5
Project:	718 Remington Street	-	·
Address:			
Phone:			
E-mail:			

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.

GENERAL

- STRUCTURAL DRAWINGS SHALL BE USED IN CONJUNCTION WITH JOB SPECIFICATIONS AND ARCHITECTURAL, MECHANICAL, ELECTRICAL, PLUMBING, AND SITE DRAWINGS
- DIMENSIONS AND CONDITIONS ST BE VERIFIED IN THE FIELD. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER BEFORE PROCEEDING WITH THE AFFECTED PART OF THE WORK.

· DO NOT SCALE DRAWINGS TO OBTAIN DIMENSIONAL INFORMATION.

- AT ALL TIMES THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONDITIONS OF THE JOBSITE INCLUDING SAFETY OF PERSONS AND PROPERTY.
- FNGINFERS' PRESENCE OR REVIEW OF WORK DOES NOT INCLUDE THE ADEQUACY OF THE CONTRACTORS' MEANS OR METHODS OF CONSTRUCTION. • SHORING, BRACING AND PROTECTION OF EXISTING AND ADJACENT STRUCTURES
- DURING CONSTRUCTION IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR
- PROTECT AND MAINTAIN THE INTEGRITY OF ADJACENT STREETS, BUILDINGS AND ALL OTHER STRUCTURES.
- •THE STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE AFTER THE STRUCTURE IS COMPLETE.
- IT IS THE CONTRACTOR'S RESPONSIBILITY TO DETERMINE ERECTION PROCEDURES AND SEQUENCE TO INSURE SAFETY OF THE BUILDING AND ITS COMPONENTS DURING ERECTION. THIS INCLUDES THE ADDITION OF NECESSARY SHORING, SHEETING, TEMPORARY BRACING, GUYS OR TIEDOWNS.
- •THE CONTRACTOR IS SOLELY RESPONSIBLE FOR INITIATING, MAINTAINING AND SUPERVISING ALL SAFETY PRECAUTIONS AND PROGRAMS IN CONNECTION WITH THE WORK.
- •THE ENGINEER OF RECORD IS NOT RESPONSIBLE FOR ANY MEANS AND METHODS OF CONSTRUCTION OR FOR ANY RELATED SAFETY PRECAUTIONS OR PROGRAMS.
- DESIGN LOADS: THE STRUCTURE HAS BEEN DESIGNED IN ACCORDANCE WITH THE IBC2021, ASCE 7-16, AND NDS 2018 CODE AND APPLICABLE REFERENCE STANDARDS.
- •THE FOLLOWING SUPERIMPOSED LOADINGS HAVE BEEN UTILIZED:

• CONTRACTOR PROPOSED CHANGES AND SUBSTITUTIONS:

- PROPOSED CHANGES OR SUBSTITUTIONS TO STRUCTURAL DETAILS OR PLANS SHALL BE SUBMITTED TO A.ZANDIEH@AHZENGINEERS.COM TO THE AHZ CONSULTING ENGINEERING, INC FOR REVIEW AND APPROVAL.
- SUBMITTALS SHALL CONTAIN FULL DOCUMENTATION OF CHANGES OR SUBSTITUTIONS WITH SUPPORTING, SEALED CALCULATIONS (WHERE APPLICABLE).
- •THE REVIEW OF CHANGES AND SUBSTITUTIONS, RE-ANALYSIS AND/OR RE-DRAFTING TO INCORPORATE CHANGES AND SUBSTITUTIONS, RE-ARGEISTAND DOCUMENTS ARE ADDITIONAL SERVICES FOR THE EOR.
- CONSTRUCTION COST REVISIONS ARE BETWEEN THE CONTRACTOR AND OWNER AND ARE NOT REVIEWED BY AHZ CONSULTING ENGINEERING , INC.
- WOOD: STRUCTURAL WOOD COMPONENTS (BEAMS, JOISTS, RAFTERS, ETC.) SHALL HAVE THE STRUCTURAL WOOD COMPONENTS (BEAMS, JOISTS, RAFTERS, ETC.) SHALL HAVE FOLLOWING MINIMUM ALLOWABLE FIBER STRESSES OF NO. 1 SOUTHERN PINE CONFORMING TO THE LATEST EDITION OF NDS, AS FOLLOWS: SHEAR Fv 175 psi BENDING 2X4 Fb 1,100 psi BENDING 2X6 Fb 1,000 psi BENDING 2X8 Fb 925 psi BENDING 2X10 Fb 800 psi BENDING 2X12 Fb 750 psi
- •AS SHOWN ON STRUCTURAL DRAWINGS, ALL WOOD MEMBERS SHALL BE PROTECTED OR PRESSURETREATED IN ACCORDANCE WITH AMERICAN WOOD - PRESERVERS' ASSOCIATION-STANDARDS.
- MEMBER SIZES SHOWN ARE NOMINAL UNLESS NOTED OTHERWISE.
- SUBSTITUTIONS ARE ACCEPTABLE WITH THE APPROVAL OF THE STRUCTURAL ENGINEER.
- UNLESS SHOWN OTHERWISE, INSTALL SIZE AND NUMBER OF FASTENERS SHOWN IN LATEST SIMPSON CATALOG.
- SEE TABLE FOR REQUIRED CONNECTOR MATERIAL AND FINISHES BASED ON APPLICATION

FOUNDATIONS

- DEWATERING OF THE SITE DURING CONSTRUCTION IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR. PRECAUTIONS SHALL BE TAKEN BY THE CONTRACTOR NOT TO UNDERMINE EXISTING FOUNDATIONS. METHOD OF DEWATERING AND CALCULATIONS FOR THE APPROPRIATE SYSTEM ARE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- ALL SOIL BEARING SURFACES SHALL BE INSPECTED AND APPROVED BY A GEOTECHNICAL ENGINEER IMMEDIATELY PRIOR TO THE PLACEMENT OF CONCRETE.
- •ARE DESIGNED FOR AN ALLOWABLE SOIL BEARING PRESSURE OF 1,5000 psf ON COMPACTED FILL.
- BEFORE CONSTRUCTION COMMENCES, SOIL BEARING CAPACITY SHALL BE VERIFIED BY A SUBSURFACE INVESTIGATION, AS WELL AS FIELD AND LABORATORY TESTS PERFORMED BY A CERTIFIED TESTING LABORATORY, WHOSE REPORT SHALL INCLUDE ANALYSIS AND RECOMMENDATIONS FOR SITE PREPARATION IN ORDER TO BEAR THE FOUNDATION LOADS.

- CONCRETE SHALL BE PLACED AND CURED ACCORDING TO ACI STANDARDS AND SPECIFICATIONS. SUBMIT PROPOSED MIX DESIGN WITH RECENT FIELD CYLINDER OR LAB TESTS FOR REVIEW PRIOR TO USE
- MIX SHALL BE UNIQUELY IDENTIFIED BY MIX NUMBER OR OTHER POSITIVE IDENTIFICATION.
- MIX SHALL MEET THE REQUIREMENTS OF ASTM C33 FOR COARSE AGGREGATE.
- CONCRETE SHALL COMPLY WITH THE REQUIREMENTS OF ASTM STANDARD C94 FOR MEASURING, MIXING, TRANSPORTING, ETC.
- CONCRETE TESTING AN INDEPENDENT TESTING LABORATORY SHALL PERFORM THE FOLLOWING TESTS ON CAST IN PLACE CONCRETE:
- ASTM C143: "STANDARD TEST METHOD FOR SLUMP OF PORTLAND CEMENT CONCRETE." MAXIMUM SLUMP SHALL BE XX INCHES.
- •ASTM C39: "STANDARD TEST METHOD FOR COMPRESSIVE STRENGTH OF CYLINDRICAL CONCRETE SPECIMENS." A SEPARATE TEST SHALL BE CONDUCTED FOR EACH CLASS, FOR EVERY 50 CUBIC YARDS (OR FRACTION THEREOF), PLACED PER DAY. REQUIRED CYLINDER(S) QUANTITIES AND TEST AGE AS FOLLOWS:
- •1 AT 3 DAYS •1 AT 7 DAYS •2 AT 28 DAYS

 $\overline{\mathbf{a}}$

ONE ADDITIONAL RESERVE CYLINDER TO BE TESTED UNDER THE DIRECTION OF THE ENGINEER, IF REQUIRED, IF 28 DAY STRENGTH IS ACHIEVED. THE ADDITIONAL CYLINDER(S) MAY BE DISCARDED.

REINFORCING STEEL: •SHALL BE ASTM A615 GRADE 60 DEFORMED BARS, FREE FROM OIL, SCALE AND RUST AND PLACED IN ACCORDANCE WITH THE TYPICAL BENDING DIAGRAM AND PLACING DETAILS OF ACI STANDARDS AND SPECIFICATIONS.

S-01

1" = 1"

any

dimer eport aefore

k all and

job Engi

the the

othe

Ó

 \bigcirc

no. 419

Job. 24.

: STRAPPING	AHZ Consulting Engineers, Inc. 111 Rodeo Irvine, CA 92602 (949) 466-1544 (901) 692-0431
	Contractor must check and verity all dimensions g. and be responsible for some, reporting any incommencing work. Engineer before discreponsible so the Engineer before incommencing work. Engineer before prints shall note be used for construction until Engineer. The some of the compared Finding and Approved For Construction' by the Engineer and shall be returned all drawings, prints and specifications are the property of the Engineer and shall be returned all work shall be performed in accordance with the latest edition of the PROVINCE BUILNG CODE, MIJONAL BUILDING CODE and regulatory regulations of the Building bearment. These notes are to be read in conjunction with all drawings and specifications. The contract shall ever and shall be returned the draft form the job and regord any discrepandies to the Engineer before proceeding.
_ GROUND LEVEL 0"	No. Date: Revision: D'wn. En, 1. Appl. 07.24 Issued for review P.K. F 53832 53832 F F F F 60.1124 53832 F F F F F 60.1124 53832 F
	Sheet title: PERGOLA BEAM PLAN Address: 718 Remington Street, FortCollins, CO 80524 Project: Pergola- 718 Remington Street Job. no. 24-419 S-02