

Historic Preservation Services

Community Development & Neighborhood Services 281 North College Avenue P.O. Box 580 Fort Collins, CO 80522.0580

970.416.4250 preservation@fcgov.com fcgov.com/historicpreservation

REPORT OF ALTERATIONS TO DESIGNATED RESOURCE Site Number/Address: 416 E. Plum Street Laurel School National Register Historic District ISSUED: August 24, 2021

Susan Catherine Ayasse 416 E. Plum St Fort Collins, CO 80524

Dear Ms. Ayasse:

This report is to document proposed alterations to the Charles A. & Alice Jensen Property at 416 E. Plum Street, pursuant to Fort Collins Municipal Code Chapter 14, <u>Article IV</u>. A copy of this report may be forwarded to the Colorado Office of Archaeology and Historic Preservation.

The alterations include:

• Installation of twenty-six (26) flush-mounted solar panels and accompanying utility equipment on the roof.

Our staff review of the proposed work finds the alterations do not meet the <u>SOI Standards for</u> <u>Treatment of Historic Properties</u>. A summary is provided below:

Applicable Code Standard	Summary of Code Requirement and Analysis (Rehabilitation)	Standard Met (Y/N)
SOI #1	A property will be used as it was historically or be given a new use that requires minimal change to its distinctive materials, features, spaces, and spatial relationships; The property's use is not being altered.	Y
SOI #2	The historic character of a property will be retained and preserved. The removal of distinctive materials or alteration of features, spaces, and spatial relationships that characterize a property will be avoided.	N
	The property was built in c.1920 (no building permit for a house is in the record, but in 1920 a frame garage was built at the address, suggesting the home was built around the same time. The first owner on record appears on that 1920 permit as Earl Grant. The first occupants that appear in a city directory are	

The solar panel installation meets some of the provisions of this Standard, mainly by being flush-mounted to avoid introducing a new roof shape. However, the guidelines for solar installations on historic buildings recommend that panels be installed toward the rear of the roof to reduce visibility (a good rule-of-thumb is to keep panels on the rear 50% of a roof). These panels extend to the front of the roof and will be highly visible from Plum Street. Staff acknowledges the site and roof form constraints that compelled this layout decision.

SOI #3	Each property will be recognized as a physical record of its time, place, and use. Changes that create a false sense of historical development, such as adding conjectural features or elements from other historic properties, will not be undertaken. The solar panels and accompanying equipment are clearly	Y
	recognizable as new features that do not date from the historic district's historic period (roughly 1880-1940).	
SOI #4	Changes to a property that have acquired historic significance in their own right will be retained and preserved.	N/A
	The project is not affecting or removing potentially historic alterations. Documented changes to the property include: - 1920 – frame garage constructed for owner Earl Grant - 1931 – reroof (asphalt composition) - 1934 – porch glassed in - 1949 – garage & chicken house reroofed - 1986 – reroof	
	- 2013 – reroof	
SOI #5	Distinctive materials, features, finishes, and construction techniques or examples of craftsmanship that characterize a property will be preserved.	N/A
SOI #6	Deteriorated historic features will be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature will match the old in design, color, texture, and, where possible, materials. Replacement of missing features will be substantiated by documentary and physical evidence.	N/A
SOI #7	Chemical or physical treatments, if appropriate, will be undertaken using the gentlest means possible. Treatments that cause damage to historic materials will not be used.	N/A
SOI #8	Archeological resources will be protected and preserved in place. If such resources must be disturbed, mitigation measures will be undertaken. No excavation is involved in this project scope.	N/A
SOI #9	New additions, exterior alterations, or related new construction shall not destroy historic materials that characterize the property. The new work shall be differentiated from the old and shall be compatible with the massing, size, scale, and architectural features to protect the historic integrity of the property and its environment. As noted above, the solar panels do follow some of the guidelines for rooftop solar on residential buildings, mainly by being flush- mounted to match the roof slope. However, they are placed forward onto the front of the roof and will be highly visible, making them not compatible with the architectural features of	N

	the building. Staff acknowledges the site and roof form constraints that compelled this layout decision.	
SOI #10	New additions and adjacent or related new construction will be undertaken in such a manner that, if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired. Solar panels are generally fully reversible with minimal damage	Y

Staff expects the property to remain contributing to the Laurel School Historic District and eligible for tax incentives, including the <u>Colorado Historic Tax Credit</u>.

If you have any questions regarding this review, please contact me. I may be reached at <u>jbertolini@fcgov.com</u> or at 970-416-4250.

Sincerely,

Jim Bertolini Historic Preservation Planner

PHOTOVOLTAIC SYSTEM

PV SYSTEM SUMMARY: 9.230 KW

RESIDENTIAL PHOTOVOLTAIC SYSTEM

SYSTEM SIZE (DC)	:	STC: 26 X 355 = 9230W DC
	:	PTC: 26 X 326.8 = 8497W DC
SYSTEM SIZE (CEC-AC)	:	26 X 326.8 X 99% =8411.83W AC
MODULES	:	26 X LONGI SOLAR: LR4-60HPB-355M
OPTIMIZERS	:	26 X SOLAR EDGE: P401
INVERTER	:	SOLAR EDGE: SE6000H-US [SI1]
TILT	:	28°, 28°
AZIMUTH	:	271°, 91°
ROOF	:	COMPOSITION SHINGLE
RAFTER/TRUSS SIZE	:	2X4 TRUSS @ 24" O.C.
ATTACHMENT TYPE	:	UNIRAC: SFM INFINITY MICRORAIL WITH UNIRAC SFM INFINITY RAIL-LESS
MAIN SERVICE PANEL	:	EXISTING 200 AMPS MSP WITH (E) 125 AMPS MAIN BREAKER ON TOP FED
INTERCONNECTION	:	PV BREAKER TIES IN MSP
OCPD RATING	:	35 AMPS
UTILITY	:	CITY OF FORT COLLINS

SITE LOCATION AND HOUSE AERIAL VIEW

ROOF PLAN WITH MODULES LAYOUT

CITY NOTES:

THIS PROJECT COMPLIES WITH THE FOLLOWING: 2018 International Building Code 2018 International Residential Code 2018 International Energy Conservation Code 2018 International Mechanical Code 2018 International Fuel Gas Code 2020 National Electric Code 2020 National Electric Code 2006 International Property Maintenance Code 2017 ICC AS ADOPTED BY CITY OF FORT COLLINS

CONDUIT AND CONDUCTOR SPECIFICATIONS ARE BASED ON MINIMUM CODE REQUIREMENTS AND ARE NOT MEANT TO LIMIT UP-SIZING AS REQUIRED BY FIELD CONDITIONS.

ALL SOLAR ENERGY SYSTEM EQUIPMENT SHALL BE SCREENED TO THE MAXIMUM EXTENT POSSIBLE AND SHALL BE PAINTED A COLOR SIMILAR TO THE SURFACE UPON WHICH THEY ARE MOUNTED.

MODULES SHALL BE TESTED , LISTED AND INDENTIFIED WITH FIRE CLASSIFICATION IN ACCORDANCE WITH UL 2703. SMOKE AND CARBON MONOXIDE ALARMS ARE REQUIRED PER SECTION R314 AND 315 TO BE VERIFIED AND INSPECTED BY INSPECTOR IN THE FIELD.

INSTALLATION NOTES:

DIG ALERT (811) TO BE CONTACTED AND COMPLIANCE WITH EXCAVATION SAFETY PRIOR TO ANY EXCAVATION TAKING PLACE

INSTALL CREW TO VERIFY ROOF STRUCTURE PRIOR TO COMMENCING WORK. EMT CONDUIT ATTACHED TO THE ROOF USING CONDUIT MOUNT.

FREEDOM FOREVER COLORADO LLC 9959 E GEDDES AVE, CENTENNIAL, CO 80112 Tel: (800) 385-1075

TABLE OF CONTENTS

SITE PLAN

LABELS

SITE PLACARD

SAFETY PLAN

OPTIMIZER CHART

MOUNTING DETAILS

THREE LINE DIAGRAM

EXISTING SERVICE PANEL

NOTES AND EQUIPMENT LIST

PV-1

PV-2

PV-2A

PV-3

PV-4

PV-5

PV-6

PV-7

PV-7A

PV-8

PV-9 & 10

Mat

AYASSE, SUSAN C.

416 E PLUM ST, FORT COLLINS, CO 80524

REVISIONS:			
DESCRIPTION	DATE	REVISION	
			[
			E

Ξ						
				LEGEN O O AC MSP JB PM INV SUB	ID: CH PIF AT MC RA RA RA SE AC DIS SU	IIMNEY PE VENT TACHMENTS DULES FTERS IL TBACK SCONNECT SP NCTION X ODUCTION TER (ERTER B PANEL
	SITE PL SCALE	AN : 0.004	4883			-(1)
DATE: DESIGN 3Y: JOB NO.:	7/9/2021 AW F095048	TITLE:	SITE PL/	AN		SHEET: PV-2

						ROOF ARE	A STATEMENT			
PV SYSTEM	156 SQ FT	ROOF	MODULES QTY	PITCH	AZIMUTH	ROOF AREA	ARRAY AREA	ARRAY COVERAGE %	SYSTEM DISTRIBUTED WEIGHT	ATTACHMENT POINT-LOAD
9.230 kW-DC		1	21	28°	271°	411.78 SQ FT	379.05 SQ FT	21.77%	2.31 PSF	6.30 LBS
6.000 kW-AC		2	5	28°	91°	716.33 SQ FT	90.25 SQ FT			

NOTES:

- 1. EMT CONDUIT ATTACHED TO THE ROOF USING CONDUIT MOUNTS
- 2. ATTACHED CLAMPS AT 25% FROM THE EDGE AND 50% FROM THE CENTER OF THE MODULES
- 3. JUNCTION BOX IS MOUNTED TO THE RAIL.

	CLIENT:
ELECTRICAL CONTRACTOR NO: ELECTRICAL CONTRACTOR	
EC.0101397; MASTER ELECTRICIAN ME.0601313	
GREG ALBRIGHT	
Buy allito	

AYASSE, SUSAN C.

416 E PLUM ST, FORT COLLINS, CO 80524

ATTACHMENT POINT-LOAD 6.30 LBS			PROFILE	ADRIAN ADRIAN 14793	SED MG - MAN
o FIRE ACCESS PATHWAYS				LEGEND: CHI CHI CHI AT ^T MO AT ^T MO AC AC AC DIS MSP MSP MSP MSP MSP MSP MSP MS	IMNEY E VENT FACHMENTS DULES FTERS L FBACK CONNECT P NCTION COUCTION TER ERTER B PANEL
		ROOF PL SCALE:	AN 0.012452		-(1)
DESCRIPTION DATE REVISION Image: Constraint of the second	DATE: DESIGN BY: JOB NO.:	7/9/2021 AW F095048	TITLE: ROOF PLA MODULES L	AN W/ AYOUT	SHEET: PV-2A

ATE:	7/9/2021	TITLE:	SHEET:
ESIGN Y:	AW	MOUNTING DETAILS	PV-3
OB NO.:	F095048		

BACKFEED BREAKER SIZING						CONDUCTOR AMPACITY DE	-RATE CALCULA	TION			
MAX. CONTINUOUS OUTPUT 25A @ 240V 25 X 1.25 = 31.25AMPS 35A BREAKER - OK			EQUIPM	ENT		WIRE LOCATION	CONDUCTOR QTY.	AWG WIRE SIZE	NEC FACTORS TABLE 310.15(B)(16)	NEC FACTORS TABLE 310.15(B)(2)(a)	CONDUCTOR AMPACITY @90C ADJ.
SEE 705.12 OF 2020 NEC	1	AC	INVERTER	TO	AC DISCONNECT	EXTERIOR WALL	3	8	50	1	50
200 X 1.20 = 240	2	AC	AC DISCONNECT	ТО	POI	EXTERIOR WALL	3	8	50	1	50
240 - 125 = 115A ALLOWABLE BACKFEED											
PV SYSTEM 9.230 kW-DC 6.000 kW-AC											

#8 AWG MUST BE IN EMT CONDUIT

(E) 200A RATE THI JUNE REAVER (I) TEAA 2P MAIN UTURE (I) FED UTURE							
NOTE: CONDUIT AND CONDUCTORS SPECIFICATIONS ARE BASED ON MINIMUM CODE REQUIREMENTS AND ARE NOT MEANT TO LIMIT UP-SIZING AS REQUIRED BY FIELD CONDITIONS							
DATE: 7/9/2021	TITLE:	SHEET:					
DESIGN BY: AW	THREE LINE	PV-4					
JOB NO.: F095048							

NEC FACTORS TABLE 310.15(B)(3)(a)

1.00 1.00

AYASSE, SUSAN C.

416 E PLUM ST, FORT COLLINS, CO 80524

REVISIONS: DATE DATE: 7/9/2021 TITLE: SHEET: DESCRIPTION DATE REVISION DATE: 7/9/2021 EXISTING SERVICE DESERN DESIGN BY: AW EXISTING SERVICE PV-5					
DESIGN AW EXISTING SERVICE PV-5	REVISIONS: DESCRIPTION DA	DATE:	7/9/2021	TITLE:	SHEET:
		 DESIGN BY:	AW	EXISTING SERVICE	PV-5
JOB NO.: F095048			1		

GENERAL NOTES:

26 LONGI SOLAR WIRED AND LISTED TO UL1703 STANDARDS

THE SOLAREDGE INVERTER IS INTEGRATED WITH DC DISCONNECTION AND ARC FAULT PROECTION. IT IS ATTACHED WITH SYSTEM ELECTRICAL SPECIFICATIONS W/ GROUND FAULT PROTECTION & LISTED TO UL 1741 STANDARDS.

PHOTOVOLTAIC SYSTEM GROUND WILL BE TIED INTO EXISTING GROUND AT MAIN SERVICE FROM DC DISCONNECT/INVERTER AS PER 2020 NEC SEC 250.166(A).

SOLAR PHOTOVOLTAIC SYSTEM EQUIPMENT WILL BE INSTALLED IN ACCORDANCE WITH REQUIREMENTS OF ART. 690 OF THE 2020 NEC

CONDUIT ABOVE ROOF SHALL BE NO LESS THAN 1 INCH FROM TOP OF THE ROOF TO BOTTOM OF RACEWAY. TABLE NEC 310.15(B)(3)(C)

PHOTOVOLTAIC DC CONDUCTORS ENTERING THE BUILDING SHALL BE INSTALLED IN METALLIC RACEWAY AND SHALL BE IDENTIFIED EVERY 10 FEET -- AND WITHIN 1 FOOT ABOVE AND BELOW PENETRATIONS OF ROOF/CEILING ASSEMBLIES WALLS OR BARRIERS -- WITH MINIMUM 3/8-INCH-HIGH WHITE LETTERING ON RED BACKGROUND READING: WARNING: PHOTOVOLTAIC POWER SOURCE.

SYSTEM GROUNDING ELECTRODE CONDUCTOR FOR PV SYSTEM TO BE SIZED TO MEET THE REQUIREMENTS OF 2020 NEC

THE EXISTING MAIN SERVICE PANEL WILL BE EQUIPPED WITH A GROUND ROD OR UFER

UTILITY COMPANY WILL BE NOTIFIED PRIOR TO ACTIVIATION OF THE SOLAR PV SYSTEM

TERMINALS OF THE DISCONNECTING MEANS MAY BE ENERGIZED IN THE OPEN POSITION

SOLAREDGE INVERTERS ARE LISTED TO UL 1741 AND UL 1699B STANDARDS

SOLAREDGE OPTIMIZERS ARE LISTED TO IEC 62109-1 (CLASS II SAFETY) AND UL 1741 STANDARDS

MATERIAL LIST:

QTY.	PART	PART #	DESCRIPTION
26	MODULES	114-355	LONGI SOLAR: LR4-60HPB-355M
26	OPTIMIZERS	130-401	P401 SOLAREDGE POWER OPTIMIZER - FRAME MOUNTED MODULE ADD-ON
1	JUNCTION BOX	480-276	600VDC NEMA 3R UL LISTED JUNCTION BOX
2	CONNECTORS	240-300	STAUBLI / MULTI-CONTACT MC4 CONNECTORS (FEMALE)
2	CONNECTORS	240-301	STAUBLI / MULTI-CONTACT MC4 CONNECTORS (MALE)
1	INVERTER	120-601	SE6000H-US [SI1] 240V INVERTER UL1741 SA CERTIFIED INTEGRATED ARC FAULT PROTECTION AND RAPID SHUTDOWN
1	AC DISCONNECT	323-060	60A RATED 240VAC NEMA 3R UL LISTED
1	ROOF ATTACHMENT 1	261-602	UNIRAC: SFM INFINITY MICRORAIL
45	MICRORAIL 1	261-602	SFM MICRORAIL 2 INCH
19	SFM TRIM 1	241-253	FLASHKIT SFM TRIM COMP DARK
49	SFM SLIDER 1	261-603	FLASHKIT SFM SLIDER COMP DARK
15	BONDING CLAMP 1	221-100	SFM N/S BONDING CLAMP
6	BONDING CLAMP 1	241-404	SFM TRIM BONDING CLAMP
28	MOUNT ASSEMBLY 1	241-405	MLPE MOUNT ASSY
16	SFM SPLICE 1	261-604	SFM SPLICE
4	SFM ATTACHED SPLICE 1	211-101	SFM ATTACHED SPLICE 8 INCH
22	TRIMRAIL 1	261-606	SFM TRIMRAIL UNIV CLIP W/ HDW
7	TRIM SPLICE 1	261-605	SFM TRIM SPLICE DRK
12	TRIMRAIL 1	211-115	SFM TRIMRAIL UNIV DRK
26	GROUND LUG 1	260-585	ILSCO GROUND LUG
26	TRIM END CAPS 1	221-200	UNIRAC SFM TRIM END CAPS

		CLIENT:	REVISIONS:			DATE	7/0/2021	TITLE:	SHEET:
^O freedom	ELECTRICAL CONTRACTOR NO: ELECTRICAL CONTRACTOR	AYASSE, SUSAN C.	DESCRIPTION	DATE	REVISION	DATE:	119/2021		1
FOREVER	EC.0101397; MASTER ELECTRICIAN ME.0601313	416 E PLUM ST,				DESIGN	A)A/	NOTES AND	
FREEDOM FOREVER COLORADO LLC	GREG ALBRIGHT	FORT COLLINS, CO 80524				BY:	AVV	EQUIPMENT LIST	PV-6
9959 E GEDDES AVE, CENTENNIAL, CO 80112 Tel: (800) 385-1075	4 allit						E005040		1
	Juny Uning D					JOB NO.	F095048		

BREAKER SIZES:

35A PV BREAKER

SERVICE:

WING: ENGRAVED OR CTRO-PLATING. EXT AND LINE AND PLACED IN BE EQUIPMENT WITH	N R324 MARKINGS MING: ENGRAVED OR CTRO-PLATING. XT AND LINE AND PLACED IN E EQUIPMENT WITH	N G'' K Hazard.			
WING: ENGRAVED OR CTRO-PLATING. EXT AND LINE AND PLACED IN GE EQUIPMENT WITH	N R324 MARKINGS WING: ENGRAVED OR CTRO-PLATING. XT AND LINE AND PLACED IN E EQUIPMENT WITH				
WING: ENGRAVED OR CTRO-PLATING. EXT AND LINE AND PLACED IN E EQUIPMENT WITH	N R324 MARKINGS WING: ENGRAVED OR CTRO-PLATING. XT AND LINE AND PLACED IN E EQUIPMENT WITH				
WING: ENGRAVED OR CTRO-PLATING. EXT AND LINE AND PLACED IN BE	N R324 MARKINGS WING: ENGRAVED OR CTRO-PLATING. XT AND LINE AND PLACED IN E	EQUIPMENT WITH			
WING: ENGRAVED OR CTRO-PLATING. EXT AND LINE	N R324 MARKINGS WING: ENGRAVED OR CTRO-PLATING. XT AND LINE	AND PLACED IN BE			
	NR324 MARKINGS	WING: ENGRAVED OR CTRO-PLATING. EXT AND LINE			

ARRAY

NEC 690.31(G)(3) & (4)

"WARNING" PHOTOVOLTAIC POWER SOURCE

EVERY 10' ON CONDUIT AND ENCLOSURES

DATE:	7/9/2021	TITLE:	SHEET:
ESIGN Y:	AW	LABELS	PV-7
OB NO.:	F095048		

NOTES:

1. NEC ARTICLES 690 AND 705 AND NEC SECTION R324 MARKINGS SHOWN HEREON. 2. ALL MARKING SHALL CONSIST OF THE FOLLOWING: A. UV RESISTANT SIGN MATERIAL WITH ENGRAVED OR MACHINE PRINTED LETTERS OR ELECTRO-PLATING. B. RED BACKGROUND COLOR WHITE TEXT AND LINE WORK. C. AERIAL FONT. 3. ALL SIGNS SHALL BE SIZED APPROPRIATELY AND PLACED IN THE LOCATIONS SPECIFIED.

SIGNAGE CANNOT BE HAND-WRITTEN.

		CLIENT:	REVISIONS:			
^O freedom	ELECTRICAL CONTRACTOR NO: ELECTRICAL CONTRACTOR	AYASSE, SUSAN C.	DESCRIPTION	DATE	REVISION	DA
FOREVER	EC.0101397; MASTER ELECTRICIAN ME.0601313	416 E PLUM ST,				DE
FREEDOM FOREVER COLORADO LLC	GREG ALBRIGHT	FORT COLLINS, CO 80524				BY
9959 E GEDDES AVE, CENTENNIAL, CO 80112 Tel: (800) 385-1075	Mar alle to					JO

DATE:	7/9/2021	TITLE:		SHEET:
ESIGN Y:	AW		LABELS	PV-7A
OB NO.:	F095048			

3. SIGNS SHALL BE ATTACHED TO THE SERVICE EQUIPMENT WITH POP-RIVETS OR SCREWS.

r	1-10	11-20	21-30	31-40	41-50	51-60	SOLAREDGE OPT
1							
2							
3							
4							
5							
6							
7							
8							
9							Δ
10							

[·] freedom	
FREEDOM FOREVER COLORADO LL 9959 E GEDDES AVE, CENTENNIAL, CO 80112 Tel: (800) 385-1075	<u>C</u>

CLIENT: ELECTRICAL CONTRACTOR NO: ELECTRICAL CONTRACTOR EC.0101397; MASTER ELECTRICIAN ME.0601313 GREG ALBRIGHT J.M. J.M. J.

AYASSE, SUSAN C.

416 E PLUM ST, FORT COLLINS, CO 80524

REVISIONS:						
DESCRIPTION	DATE	REVISION	DA			
			DE			
			BY:			
			JOE			

FIMIZER CHART

ATE:	7/9/2021	TITLE:	SHEET:
ESIGN Y:	AW		PV-8
OB NO.:	F095048	CHART	

SAFETY PLAN

INSTRUCTIONS:

- 1. USE SYMBOLS IN KEY TO MARK UP THIS SHEET.
- 2. SAFETY PLAN MUST BE MARKED BEFORE JOB STARTS AS PART OF THE PRE-PLAN
- 3. DOCUMENT ALL ADDITIONAL HAZARDS ON THIS PAGE & MAKE NOTES ON THE JHA SHEET

IN CASE OF EMERGENCY

NEAREST HOSPITAL	OR OCCUPATIONAL/INDU	JSTRIAL CLINIC

NAME:

ADDRESS: _____

SAFETY COACH CONTACT INFORMATION

NAME: _____

ADDRESS: _____

ALL EMPLOYEES ON SITE SHALL BE MADE AWARE OF THE SAFETY PLAN AND SIGN INDICATING THAT THEY ARE AWARE OF THE HAZARDS ON-SITE AND THE PLAN FOR WORKING SAFELY.

NAME	<u>SI</u>	<u>GNATURE</u>
DATE:	TIME:	
ig freed		ELECTRICAL CONTRACTOR NO: ELECTRICAL CONTRACTOR EC.0101397; MASTER ELECTRICIA ME.0601313

FREEDOM FOREVER COLORADO LLC

959 E GEDDES AVE, CENTENNIAL, CO 80112 Tel: (800) 385-1075

AYASSE, SUS	SAN C.
-------------	--------

CLIENT:

GREG AL BRIGH

allift

416 E PLUM ST, FORT COLLINS, CO 80524

REVISIONS:		7/0/2021	TITLE:	SHEET:	
DESCRIPTION DATE REVISION	DATE:	119/2021			
	DESIGN				
	BY:	AW	SAFETY PLAN	PV-9	
	JOB NO .:	F095048			

MARK UP KEY

-) PERMANENT ANCHOR
-) TEMPORARY ANCHOR
- INSTALLER LADDER
- JUNCTION / COMBINER BOX
- STUB-OUT
- SKYLIGHT
- NO LADDER ACCESS (STEEP GRADE OR GROUND LEVEL OBSTRUCTIONS)
- RESTRICTED ACCESS
- CONDUIT
- GAS SHUT OFF
- H₂O WATER SHUT OFF
- 7) SERVICE DROP
- Z POWER LINES

JOB HAZARD ANALYSIS

Crew leader to fill out all sections below, hold a pre-job safety meeting with all personnel, and upload this completed document and the Safety Plan to Site Capture

Ladder Access

- Ladders must be inspected before each use.
- Extension ladders must be set up on a firm and level surface at a 4-to-1 rise to run angle (or 75 degrees) and the top must be secured to the structure. Extension style ladders placed on uneven, loose or slippery surfaces must additionally have the base firmly anchored or lashed so the base will not slip out.
- Extension ladders must be used with walk-through devices or the ladder must extend 36" above the stepping off point.
- A-frame ladders must only be climbed with the ladder spreader bars locked in the open position; A-frame ladders shall not be climbed while in the closed position (ex, closed and used while leaned against a structure).
- Additional notes:

Mobile Equipment

- Only Qualified operators will operate equipment; operators must maintain a certification on their person for the equipment being operated.
- Type(s) of mobile equipment (Type/Make/Model):
- Qualified operator(s):

Material Handling and Storage

Materials will be staged/stored in a way that does not present a hazard to client, personnel or public. Materials stored on the roof will be physically protect from failing or sliding off.

Fall Protection

- A site-specific plan for fall prevention and protection is required prior to starting work and must remain onsite at all times until work is complete; a fall rescue plan must be outlined and discussed among the crew prior to work start.
- First-person-Up (FPU) must install their anchor and connect before any other task, including installing other anchors. The Last-Person-Down (LPD) must be the only person on a roof uninstalling fall protection.
- FPCP (name and title):
- FPU and LPD (name and title):

Electrical Safety

- The Electrical Qualified Person (EQP) is required onsite to perform electrical work.
- All electrical work will be performed with equipment in an electrically safe condition (de-energized) unless approval has been granted prior to work.
- Service drops and overhead electrical hazards will be indentified and protected from contact, as neccessary.
- EQP (name and tile):

Public Protection

- The safety of the Client and the Public must be maintained at all • times.
- The Client and the Public shall be prevented from entering the work zone through the use of barriers and/or signage, as required.
- Company, Client and Public property shall be protect from falling objects.
- Pets (including dogs) shall be secured by their owners prior to . work start.
- The client should not leave pets, family members, or others in the charge or care of Employees, Contractors, or Temporary Workers.
- Crew leader responsible for communication with the client:
- Client and public is excluded from work area by barricades (N/A, Yes, No):

Training and Pre-Job Safety Briefing

- All employees onsite shall be made aware of the specific hazards of this project and review this HJA during a pre-job briefing, and their signature indicates awareness of site conditions and the plan to eliminate any hazards identified prior to and during the project.
- Crew leader (name/title):
- Crew member (name/title):

Airborne Contaminants:

- Asbestos-containing (Transite) piping (ACP) Do not disturb (move, drill, cut fracture, etc.)
- Asbestos-containing thermal insulation (ACI) and Asbestos-containing duct wrapping (ACW) - do not disturb, no attic or crawlspace access is allowed if work to be performed could cause exposure to personnel, client or public.
- If yes, list specific tasks and protection in place:

Weather and Environment

- The site supervisor shall forecast the weather conditions at the job site, prior to crew arrival, in order to mitigate any hazards associated with inclement weather (heat, cold, wind, rain, etc.)
- The site supervisor will utilized a portable wind meter (anemometer) to verify actual onsite wind conditions, by checking at the ground and on any elevated work surface (ex, rooftop) prior to work start, at midday and prior to solar panel staging on a roof.
- Elevated work involving the moving or maneuvering of solar panels shall cease at 25mph (sustained wind) until wind subsides.
- Forecasted weather maximum temp (degrees F):

Heat Related Illness Prevention

- Employees shall have access to potable drinking water that is • fresh, pure, and suitably cool. The water shall be located as close as practicable to the areas where employees are working. Water shall be supplied in sufficient quantity at the beginning of the work shift to provide at least one quart per employee per hour for drinking for the entire shift. Employees may begin the shift with smaller quantities of water if they identify the location and have effective means for replenishment during the shift to allow employees to drink on quart or more per hour. The frequent drinking of water shall be encouraged.
- Shade shall be present when temperature exceeds 80 degrees Fahrenheit. When the outdoor temperature in the work exceeds 80 degrees Fahrenheit, employees shall have and maintain one or more areas with shade at all times.
- New employees must be acclimatized. New employees will be monitored by their Crew Leader (site supervisor) for the first two (2) weeks of employment or longer when necessary.
- Employees will be allowed and encouraged to implement scheduled breaks during each shift. Employees must take cool-down breaks in the shade any time they feel the need to do so to protect them from overheating. Supervisors are REQUIRED to allow employees any break period they need during high heat conditions.
- Cool Vests are encouraged for all employees at all times during periods of high heat.
- Identify the location of the closet Occupational/Industrial Clinic ٠ or Hospital in case a crew member becomes ill.

What is the specific plan to provide and replenish sufficient water for all employees on site?

If offsite replenish is necessary, where will you go to replenish water (location/address):

Who will replenish the drinking water (name):

		CLIENT:	REVISIONS:			DATE	7/0/2021	TITLE:	SHEET:
Ó freedom	ELECTRICAL CONTRACTOR NO: ELECTRICAL CONTRACTOR	AYASSE, SUSAN C.	DESCRIPTION	DATE	REVISION	DATE:	7/9/2021		
FOREVER	EC.0101397; MASTER ELECTRICIAN ME.0601313	416 E PLUM ST,				DESIGN			
FREEDOM FOREVER COLORADO LLC	GREG ALBRIGHT	FORT COLLINS, CO 80524				BY:	,	SAFETY PLAN	PV-10
9959 E GEDDES AVE, CENTENNIAL, CO 80112 Tel: (800) 385-1075	Mr. With					JOB NO.:	F095048		
	Juny State								

Restroom facilities

- Employees shall have access to restroom facilities with hand-washing stations. Use of onsite restroom is at the client's discretion (location is annotated below). If client does not give permission, location of suitable restroom facilities with hand-washing stations offsite will be provided. The onsite supervisor will identify location and make arrangements to ensure all employees have access at any point.
- Restroom facilities will be (circle one): Onsite Offsite If Offsite, add location name and address:

Incident Reporting Procedure

Contact your Site Supervisor

Name:

Phone:

Contact your Manager

Name:

Phone:

Contact your Site Supervisor

Name:

Phone:

With: Your full name, phone number, office location, brief description of what happen and when.

NOTE ADDITIONAL HAZARDS NOT ADDRESSED ABOVE

(add as many as necessary by using additional sheets)

Define the Hazard:	Method/steps to prevent incident:
Define the Hazard:	Method/steps to prevent incident:
Define the Hazard:	Method/steps to prevent incident:
Define the Hazard:	Method/steps to prevent incident:

LR4-60HPB 345~370M

Complete System and Product Certifications

IEC 61215, IEC 61730, UL 61730

ISO 9001:2008: ISO Quality Management System

ISO 14001: 2004: ISO Environment Management System

TS62941: Guideline for module design qualification and type approval

OHSAS 18001: 2007 Occupational Health and Safety

* Specifications subject to technical changes and tests. LONGi Solar reserves the right of interpretation. **Positive power tolerance** (0 ~ +5W) guaranteed

High module conversion efficiency (up to 20.3%)

Slower power degradation enabled by Low LID Mono PERC technology: first year <2%, 0.55% year 2-25

Solid PID resistance ensured by solar cell process optimization and careful module BOM selection

Reduced resistive loss with lower operating current

Higher energy yield with lower operating temperature

Reduced hot spot risk with optimized electrical design and lower operating current

Room 801, Tower 3, Lujiazui Financial Plaza, No.826 Century Avenue, Pudong Shanghai, 200120, China Tel: +86-21-80162606 E-mail: module@longi-silicon.com Facebook: www.facebook.com/LONGi Solar

Note: Due to continuous technical innovation, R&D and improvement, technical data above mentioned may be of modification accordingly. LONGi have the sole right to make such modification at anytime without further notice; Demanding party shall request for the latest datasheet for such as contract need, and make it a consisting and binding part of lawful documentation duly signed by both parties.

* These Modules are not offered, distributed or supplied to Germany by the LONGi Group.

LONGi Solar Technologie GmbH does not offer, distribute or supply those Modules in Germany or any other country.

-MA 4n

(Black)

NFW

R4-60HPB 345~370M **Mechanical Parameters**

Design (mm)

Cell Orientation: 120 (6×20)
Junction Box: IP68, three diodes
Output Cable: 4mm ² , 300mm in length,
length can be customized
Glass: Single glass
3.2mm coated tempered glass
Frame: Anodized aluminum alloy frame
Weight: 19.5kg
Dimension: 1755×1038×35mm
Packaging: 30pcs per pallet
180pcs per 20'GP
780pcs per 40'HC

Operating Parameters

Operational Temperature: -40 °C ~ +85 °C Power Output Tolerance: 0 ~ +5 W Voc and Isc Tolerance: ±3% Maximum System Voltage: DC1000V (IEC/UL) Maximum Series Fuse Rating: 20A Nominal Operating Cell Temperature: 45±2 °C Safety Class: Class II Fire Rating: UL type 1 or 2

Test uncertainty for Pmax: ±3%

Electrical Characteristics

Model Number	LR4-60H	PB-345M	LR4-60H	PB-350M	LR4-60H	PB-355M	LR4-60H	PB-360M	LR4-60H	PB-365M	LR4-60H	PB-370M
Testing Condition	STC	NOCT										
Maximum Power (Pmax/W)	345	257.6	350	261.4	355	265.1	360	268.8	365	272.6	370	276.3
Open Circuit Voltage (Voc/V)	40.2	37.7	40.4	37.9	40.6	38.1	40.8	38.2	41.0	38.4	41.2	38.6
Short Circuit Current (Isc/A)	11.06	8.95	11.16	9.02	11.25	9.09	11.33	9.16	11.41	9.23	11.50	9.30
Voltage at Maximum Power (Vmp/V)	34.2	31.8	34.4	32.0	34.6	32.2	34.8	32.4	35.0	32.6	35.2	32.8
Current at Maximum Power (Imp/A)	10.09	8.09	10.18	8.16	10.27	8.23	10.35	8.30	10.43	8.36	10.52	8.43
Module Efficiency(%)	18	.9	19	.2	19	.5	19	.8	2	0.0	20	0.3

nw: +1mn

STC (Standard Testing Conditions): Irradiance 1000W/m², Cell Temperature 25 $^\circ$ C , Spectra at AM1.5

NOCT (Nominal Operating Cell Temperature): Irradiance 800W/m², Ambient Temperature 20 C, Spectra at AM1.5, Wind at 1m/S

Temperature Ratings (STC)		Mechanical Loading	
Temperature Coefficient of Isc	+0.048%/°C	Front Side Maximum Static Loading	5400Pa
Temperature Coefficient of Voc	-0.270%/ [°] C	Rear Side Maximum Static Loading	2400Pa
Temperature Coefficient of Pmax	-0.350%/ [°] C	Hailstone Test	25mm Hailstone at the speed of 23m/s

I-V Curve

Current-Voltage Curve (LR4-60HPB-360M)

Power-Voltage Curve (LR4-60HPB-360M)

Current-Voltage Curve (LR4-60HPB-360M)

LONG

Room 801, Tower 3, Lujiazui Financial Plaza, No.826 Century Avenue, Pudong Shanghai, 200120, China Tel: +86-21-80162606 E-mail: module@longi-silicon.com Facebook: www.facebook.com/LONGi Solar

Note: Due to continuous technical innovation, R&D and improvement, technical data above mentioned may be of modification accordingly. LONGi have the sole right to make such modification at anytime without further notice; Demanding party shall request for the latest datasheet for such as contract need, and make it a consisting and binding part of lawful documentation duly signed by both parties.

These Modules are not offered, distributed or supplied to Germany by the LONGi Group.

LONGi Solar Technologie GmbH does not offer, distribute or supply those Modules in Germany or any other country.

Single Phase Inverter with HD-Wave Technology

for North America

SE3000H-US / SE3800H-US / SE5000H-US / SE6000H-US / SE7600H-US / SE10000H-US / SE11400H-US

Optimized installation with HD-Wave technology

- Specifically designed to work with power optimizers
- Record-breaking efficiency
- Fixed voltage inverter for longer strings
- / Integrated arc fault protection and rapid shutdown for / Optional: Revenue grade data, ANSI C12.20 NEC 2014 and 2017, per article 690.11 and 690.12
- UL1741 SA certified, for CPUC Rule 21 grid compliance

- Extremely small
- Built-in module-level monitoring
- Øutdoor and indoor installation
- Class 0.5 (0.5% accuracy)

NVERTERS

/ Single Phase Inverter with HD-Wave Technology for North America SE3000H-US / SE3800H-US / SE5000H-US / SE6000H-US/ SE7600H-US / SE10000H-US / SE11400H-US

	SE3000H-US	SE3800H-US	SE5000H-US	SE6000H-US	SE7600H-US	SE10000H-US	SE11400H-US	
OUTPUT			<u></u>	W	1	1		
Rated AC Power Output	3000	3800 @ 240V 3300 @ 208V	5000	6000 @ 240V 5000 @ 208V	7600	10000	11400 @ 240V 10000 @ 208V	VA
Maximum AC Power Output	3000	3800 @ 240V 3300 @ 208V	5000	6000 @ 240V 5000 @ 208V	7600	10000	11400 @ 240V 10000 @ 208V	VA
AC Output Voltage MinNomMax. (211 - 240 - 264)	*	1	✓	✓	√	*	1	Vac
AC Output Voltage MinNomMax. (183 - 208 - 229)	-	1	-	✓	-	-	1	Vac
AC Frequency (Nominal)				59.3 - 60 - 60.5 ⁽¹⁾				Hz
Maximum Continuous Output Current @240V	12.5	16	21	25	32	42	47.5	A
Maximum Continuous Output Current @208V	-	16	-	24	-	-	48.5	A
GFDI Threshold				1				A
Utility Monitoring, Islanding Protection, Country Configurable Thresholds				Yes				
INPUT								
Maximum DC Power @240V	4650	5900	7750	9300	11800	15500	17650	W
Maximum DC Power @208V	-	5100	-	7750	-	-	15500	W
Transformer-less, Ungrounded				Yes				
Maximum Input Voltage				480				Vdc
Nominal DC Input Voltage		3	80			400		Vdc
Maximum Input Current @240V ⁽²⁾	8.5	10.5	13.5	16.5	20	27	30.5	Adc
Maximum Input Current @208V ⁽²⁾	-	9	-	13.5	-	-	27	Adc
Max. Input Short Circuit Current				45				Adc
Reverse-Polarity Protection		Yes						
Ground-Fault Isolation Detection				600kΩ Sensitivity				
Maximum Inverter Efficiency	99			9	9.2			%
CEC Weighted Efficiency				99			99 @ 240V 98.5 @ 208V	%
Nighttime Power Consumption				< 2.5				W
ADDITIONAL FEATURES	т. #							
Supported Communication Interfaces			RS485, Etherne	et, ZigBee (optional), C	Cellular (optional)			
Revenue Grade Data, ANSI C12.20				Optional ⁽³⁾				
Rapid Shutdown - NEC 2014 and 2017 690.12			Automatic Rap	id Shutdown upon AC	Grid Disconnect			
STANDARD COMPLIANCE								
Safety		UL1741	, UL1741 SA, UL1699B	, CSA C22.2, Canadiar	n AFCI according to T.	I.L. M-07		
Grid Connection Standards			IEE	E1547, Rule 21, Rule 14	4 (HI)			1
Emissions				FCC Part 15 Class B				
INSTALLATION SPECIFICA	TIONS							
AC Output Conduit Size / AWG Range		3/	'4" minimum / 14-6 A'	WG		3/4" minimu	m /14-4 AWG	
DC Input Conduit Size / # of Strings / AWG Range		3/4" minimum / 1-2 strings / 14-6 AWG 3/4" minimum / 1-3 strings / 14-6 AWG						
Dimensions with Safety Switch (HxWxD)		17.7 x 14.6 x 6.8 / 450 x 370 x 174 21.3 x 14.6 x 7.3 / 540 x 370 x 185						in / mm
Weight with Safety Switch	22	22 / 10 25.1 / 11.4 26.2 / 11.9 38.8 / 17.6 I						lb / kg
Noise		<	25			<50		dBA
Cooling				Natural Convection				
Operating Temperature Range			-40 to +140 /	'-25 to +60 ⁽⁴⁾ (-40°F /	-40°C option)(5)			°F/°C
Protection Rating			NEMA	4X (Inverter with Safe	ty Switch)			
 ⁽¹⁾ For other regional settings please contact So ⁽²⁾ A higher current source may be used; the in ⁽³⁾ Revenue grade inverter P/N: SExxxXH–USOO ⁽⁴⁾ For power de-rating information refer to: ht 	olarEdge support werter will limit its input c 0NNC2 tps://www.solaredge.com	urrent to the values state /sites/default/files/se-terr	d nperature-derating-note-	na.pdf				

⁽⁵⁾ -40 version P/N: SExxxxH-US000NNU4

© SolarEdge Technologies, Inc. All rights reserved. SOLAREDGE, the SolarEdge logo, OPTIMIZED BY SOLAREDGE are trademarks or registered trademarks of SolarEdge Technologies, Inc. All other trademarks mentioned herein are trademarks of their respective owners. Date: 12/2018/V01/ENG NAM. Subject to change without notice.

solaredge.com

Power Optimizer

P370 / P401 / P404 / P405 / P485 / P500 / P505

POWER OPTIMIZER

PV power optimization at the module level

- Specifically designed to work with SolarEdge inverters / Superior efficiency (99.5%) I
- Up to 25% more energy
- Next generation maintenance with module-level I monitoring
- Mitigates all types of modules mismatch-loss, from manufacturing tolerance to partial shading
- Flexible system design for maximum space utilization
- Module-level voltage shutdown for installer and firefighter safety
- Fast installation with a single bolt

/ Power Optimizer

P370 / P401 / P404 / P405 / P485 / P500 / P505

OPTIMIZER MODEL (typical module compatibilty)	P370 (60/72 Cell modules)	P401 (For high power 60/72-cell modules)	P404 (for 60/72- cell short strings)	P405 (for high-voltage modules)	P485 (for high-voltage modules)	P500 (for 96-cell modules)	P505 (for higher current modules)	UNIT
INPUT								
Rated Input DC Power ⁽¹⁾	370	400	405	405	485	500	505	W
Absolute Maximum Input Voltage (Voc at lowest temperature)	60)	80	12	25	80	83	Vdc
MPPT Operating Range	8 -	50	12.5 - 80	12.5	- 105	8 - 80	12.5-83	Vdc
Maximum Short Circuit Current (Isc)	11	11.75		11		10.1	14	Adc
Maximum Efficiency				99.5				%
Weighted Efficiency				98.8				%
Overvoltage Category				II				
OUTPUT DURING OPERATIO	ON (POWER O	PTIMIZER CO	NNECTED T	O OPERATIN	G SOLAREDO	GE INVERTER	र)	
Maximum Output Current				15				Adc
Maximum Output Voltage	60)		85		60	85	Vdc
OUTPUT DURING STANDBY (P	OWER OPTIMIZ	ER DISCONN	ECTED FROM	SOLAREDGE I	NVERTER OR S	SOLAREDGE I	NVERTER OF	F)
Safety Output Voltage per Power Optimizer				1 ± 0.1				Vdc
STANDARD COMPLIANCE								
EMC			FCC Part15 Class	B, IEC61000-6-2,	IEC61000-6-3			
Safety			IEC62109-	1 (class II safety),	UL1741			
RoHS				Yes				
Fire Safety			VDE-A	R-E 2100-712:201	3-05			
INSTALLATION SPECIFICATI	ONS							
Maximum Allowed System Voltage				1000				Vdc
Dimensions (W x L x H)	129 x 153 x 27.5 / 5.1 x 6 x 1.1	129 x 153 x29.5 / 5.08 x6.02 x 1.16	129 x 89 x 42.5 / 5.1 x 3.5 x 1.7	129 x 90 x 49.5	/ 5.1 x 3.5 x 1.9	129 x 153 x 33.5 / 5.1 x 6 x 1.3	129 x 162 x 59 / 5.1 x 6.4 x 2.3	mm / in
Weight (including cables)	655 /	1.5	775 / 1.7	845	/ 1.9	750 / 1.7	1064 / 2.3	gr / lb
Input Connector	MC4 ⁽²⁾ MC4 ⁽²⁾							
Input Wire Length	0.16 / 0.52 r						m / ft	
Output Connector				MC4				
Output Wire Length				1.2 / 3.9				m / ft
Operating Temperature Range			-40	- +85 / -40 - +18	5			°C / °F
Protection Rating				IP68				
Relative Humidity		0 - 100 %						%

(1) Rated power of the module at STC will not exceed the optimizer "Rated Input DC Power". Modules with up to +5% power tolerance are allowed.

 (2) For other connector types please contact SolarEdge.
 (3) For dual version for parallel connection of two modules use the P485. In the case of an odd number of PV modules in one string, installing one P485 dual version power optimizer connected to one PV module is supported. When connecting a single module, seal the unused input connectors using the supplied pair of seals.

PV SYSTEM DESIGN USING A SOLAREDGE INVERTER ⁽⁴⁾⁽⁵⁾		SINGLE PHASE HD-WAVE	SINGLE PHASE	THREE PHASE	THREE PHASE FOR 277/480V GRID		
Minimum String Length	P370, P401, P500 ⁽⁶⁾	8		16	18		
(Power Optimizers)	P404, P405, P485, P505		6	14 (13 with SE3K ⁽⁷⁾)	14		
Maximum String Length (Power Optimizers)		-	25	50	50		
Maximum Power per String		5700	5250	11250(8)	12750 ⁽⁹⁾	W	
Parallel Strings of Different Lengths or Orientations		Yes					

(4) It is not allowed to mix P404/P405/P405/P405/P505 with P370/P401/P500/P600/P650/P730/P801/P800p/P850/P950 in one string.
(5) For SE15k and above, the minimum DC power should be 11KW.
(6) The P370/P401/P500 cannot be used with the SE3K three phase inverter (available in some countries; refer to the three phase inverter SE3K-SE10K datasheet).
(7) Exactly 10 when using SE3K-RW010BNN4
(8) For the 230/400V grid: it is allowed to install up to 13,500W per string when the maximum power difference between each string is 2,000W.
(9) For the 237/400V grid: it is allowed to install up to 13,500W per string when the maximum power difference between each string is 2,000W.

(9) For the 277/480V grid: it is allowed to install up to 15,000W per string when the maximum power diference between each string is 2,000W

SFM INFINITY

Take your business to the next level with **SFM** INFINITY, UNIRAC's rail-less PV mounting system for flush mount installations on comp shingle and tile roofs. An advanced 3rd generation product platform in use by top solar contractors nationwide, **SFM** INFINITY optimizes your operations on and off the roof, with approximately 40% less labor, 30% logistics savings, and 20% fewer roof attachments than traditional solar racking. Plus, 87% of homeowners prefer **SFM** INFINITY's aesthetics.

SUPERIOR PERFORMANCE Enhance your business with two installs per day and 30% less cost.

EASY INSTALLATION Pre-assembled components, 20% fewer roof attachments, and level array in seconds with post height adjustment.

HOMEOWNER PREFERRED More than 4 out of 5 homeowners prefer **SFM** INFINITY'S aesthetics over a leading rail brand.

SFM INFINITY **DESIGN GUIDELINES**

to maximize its benefits.

DEFAULT TO LANDSCAPE

When possible, design in landscape orientation in order to fit more modules on the roof and minimize roof attachments

CONSULT THE QUICK TIPS VIDEOS

Visit UNIRAC's mobile-friendly library of short, topic-specific videos which answer common questions and demonstrate how simple it is to install **SFM** INFINITY.

Quick Tips Videos: https://unirac.com/SFM-Infinity/

Layout your arrays in **U-Builder**, UNIRAC's free solar design software, to optimize **SFM** INFINITY'S capabilities, including mixing module orientations and minimizing roof attachments. Quickly create lavouts on Google or Bing Maps and generate project documents

U-Builder: https://design.unirac.com/

REVOLUTIONIZING ROOFTOP SOLAR

FOR QUESTIONS OR CUSTOMER SERVICE VISIT UNIRAC.COM OR CALL (505) 248-2702

While you will see advantages simply from switching to **SFM** INFINITY, the following guidelines will help you

MIX MODULE ORIENTATIONS

SFM INFINITY is easily configured in mixed array shapes and module orientations to maximize array density and to avoid vent pipes and other obstacles. Because mounting locations are not constrained by rails, **SFM** INFINITY has unmatched flexibility to enhance your projects.

DESIGN IN U-BUILDER

Issued: 11-Apr-2016 Revised: 20-Mar-2019

2.0 Product Des	scription
Product	Photovoltaic Mounting System, Sun Frame Microrail - Installed Using Unirac Installation Guide, Rev PUB2019MAR01 with Annex North Row Extension Installation Guide Rev PUB2019FEB20
Brand name	Unirac
	The product covered by this report is the Sun Frame Micro Rail roof mounted Photovoltaic Rack Mounting System. This system is designed to provide bonding and grounding to photovoltaic modules. The mounting system employs anodized or mill finish aluminum brackets that are roof mounted using the slider, outlined in section 4 of this report. There are no rails within this product, whereas the 3" Micro Rail, Floating Splice, and 9" Attached Splice electrically bond the modules together forming the path to ground.
Description	The Micro Rails are installed onto the module frame by using a stainless steel bolt anodized with black oxide with a stainless type 300 bonding pin, torqued to 20 ft-lbs, retaining the modules to the bracket. The bonding pin of the Micro Rail when bolted and torqued, penetrate the anodized coating of the photovoltaic module frame to contact the metal, creating a bonded connection from module to module.
	The grounding of the entire system is intended to be in accordance with the latest edition of the National Electrical Code, including NEC 250: Grounding and Bonding, and NEC 690: Solar Photovoltaic Systems. Any local electrical codes must be adhered in addition to the national electrical codes. The Grounding Lug is secured to the photovoltaic module, torqued in accordance with the installation manual provided in this document.
	Other optional grounding includes the use of the Enphase UL2703 certified grounding system, which requires a minimum of 2 micro-inverters mounted to the same rail, and using the same engage cable.
Models	Unirac SFM

2.0 Product Des	cription
Model Similarity	NA
Ratings	Fuse Rating: 30A Module Orientation: Portrait or Lands Maximum Module Size: 17.98 ft ² UL2703 Design Load Rating: 33 PSF Tested Loads - 50 psf/2400Pa Downwa Trina TSM-255PD05.08 and Sunpower Increased size ML test: Maximum Module Size: 22.3 ft ² UL2703 Design Load Rating: 113 PS LG355S2W-A5 used for Mechanical Lo Mounting configuration: Four mounti 24" UL2703 Design Load Rating: 46.9 PS LG395N2W-A5, LG360S2W-A5 and L
	Mounting configuration: Six mounting 74.5" Fire Class Resistance Rating: - Class A for Steep Slope Applications interstitial gap. Installations must includ - Class A for Steep Slope Applications interstitial gap. Installations must includ - Class A Fire Rated for Low Slope app This system was evaluated with a 5" gas surface See section 7.0 illustraction # 1 and 1a
Other Ratings	NA
ounderivatings	

scape

Downward, 33 PSF Upward, 10 PSF Down-Slope ard, 50psf/2400Pa Uplift, 15psf/720Pa Down Slope r SPR-E20-327 used for Mechanical Loading

- F Downward, 50 PSF Upward, 30 PSF Down-Slope oading test.
- ings on each long side of panel with the longest span of
- SF Downward, 40 PSF Upward, 10 PSF Down-Slope G355S2W-A5 used for used for Mechanical Loading
- gs for two modules used with the maximum span of
- when using Type 1 Modules. Can be installed at any de Trim Rail.
- when using Type 2 Modules. Can be installed at any de Trim Rail.
- plications with Type 1 or 2 listed photovoltaic modules. ap between the bottom of the module and the roof's

for a complete list of PV modules evaluated with these

AUTHORIZATION TO MARK

This authorizes the application of the Certification Mark(s) shown below to the models described in the Product(s) Covered section when made in accordance with the conditions set forth in the Certification Agreement and Listing Report. This authorization also applies to multiple listee model(s) identified on the correlation page of the Listing Report.

This document is the property of Intertek Testing Services and is not transferable. The certification mark(s) may be applied only at the location of the Party Authorized To Apply Mark.

Applicant:	Unirac, Inc	Manufacturer:	Cixi Emeka Aluminum Co. Ltd
Address:	1411 Broadway Blvd NE Albuquerque, NM 87102	Address:	No. 688 ChaoSheng Road Cixi City Zhejiang Province 315311
Country:	USA	Country:	China
Contact:	Klaus Nicolaedis Tom Young	Contact:	Jia Liu Robin Luo
Phone:	505-462-2190 505-843-1418	Phone:	+86-15267030962 +86-13621785753
FAX:	NA	FAX:	NA
Email:	klaus.nicolaedis@unirac.com toddg@unirac.com	Email:	jia.liu@cxymj.com buwan.luo@cxymj.com
Party Authoriz Report Issuin Control Numb	zed To Apply Mark:Same as Manufactureg Office:Lake Forest, CA U.S.per:5003705Authorized by:	A. Na	talie Tohun
		for Dear	n Davidson, Certification Manager
	Interte) us k	

This document supersedes all previous Authorizations to Mark for the noted Report Number.

This Authorization to Mark is for the exclusive use of Intertek's Client and is provided pursuant to the Certification agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this Authorization to Mark. Only the Client is authorized to permit copying or distribution of this Authorization to Mark and then only in its entirety. Use of Intertek's Certification mark is restricted to the conditions laid out in the agreement and in this Authorization to Mark. Any further use of the Intertek name for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. Initial Factory Assessments and Follow up Services are for the purpose of assuring appropriate usage of the Certification mark in accordance with the agreement, they are not for the purposes of production quality control and do not relieve the Client of their obligations in this respect.

Intertek Testing Services NA Inc. 545 East Algonquin Road, Arlington Heights, IL 60005 Telephone 800-345-3851 or 847-439-5667 Fax 312-283-1672

Standard(s):	Mounting Systems, Mounting Devices, Clamping/Retention Devices, and Ground Lugs for Use with Flat- Plate Photovoltaic Modules and Panels [UL 2703: 2015 Ed.1]
Product:	Photovoltaic Mounting System, Sun Frame Microrail - Installed Using Unirac Installation Guide, Rev PUB2019MAR01 with Annex North Row Extension Installation Guide Rev PUB2019FEB20
Brand Name:	Unirac
Models:	Unirac SFM

March 12, 2020

Unirac 1411 Broadway Blvd. NE Albuquerque, NM 87102

Attn.: Unirac - Engineering Department

Re: Engineering Certification for the Unirac Sunframe Microrail, SFM Infinity U-builder Software Version 1.0

PZSE, Inc. - Structural Engineers has reviewed the Unirac's Sunframe Microrail, proprietary mounting system constructed from modular parts which is intended for rooftop installation of solar photovoltaic (PV) panels; and has reviewed the Ubuilder Online tool. This U-Builder software includes analysis for the 2" Microrail, 8" Attached Splice, 6" splice, and front trimrail. All information, data and analysis contained within are based on, and comply with the following codes and typical specifications:

- 1. Minimum Design Loads for Buildings and other Structures, ASCE/SEI 7-05, ASCE/SEI 7-10, ASCE/SEI 7-16
- 2. 2006-2018 International Building Code, by International Code Council, Inc. w/ Provisions from SEAOC PV-2 2017.
- 3. 2006-2018 International Residential Code, by International Code Council, Inc. w/ Provisions from SEAOC PV-2 2017.
- 4. AC428, Acceptance Criteria for Modular Framing Systems Used to Support Photovoltaic (PV) Panels, November 1, 2012 by ICC-ES.

Following are typical specifications to meet the above code requirements:

Design Criteria:	Ground Snow Load = 0 - 100 (psf) Basic Wind Speed = 90 - 180 (mph) Roof Mean Height = 0 - 60 (ft) Roof Pitch = 0 - 45 (degrees) Exposure Category = B. C & D	This c 1
Attachment Spacing:	Per U-builder Engineering report.	3
Cantilever:	Per U-builder Engineering report.	This r
Clearance:	2" to 10" clear from top of roof to top of PV panel.	lf you
Tolerance(s):	1.0" tolerance for any specified dimension in this report is allowed for installation.	Prepa
nstallation Orientation:	See SFM Installation Guide. Landscape - PV Panel long dimension is parallel to ridge/eave line of roof and the PV panel is mounted on the long side. Portrait - PV Panel short dimension is parallel to ridge/eave line of roof and the PV panel is mounted on the short side. Attachment shall be staggered where ground snow load exceeds 10 PSF.	PZSE, Rosev

Page 1 of 2

Values were based on UTR-299 testing provided by Unirac. **Testing:**

Components and Cladding Roof Zones:

The Components and Cladding Roof Zones shall be determined based on ASCE 7-05, ASCE 7-10 & 7-16 Component and Cladding design.

Notes:

- include roof capacity check. 2) Risk Category II per ASCE 7-16. 3) Topographic factor, kzt is 1.0. 4) Array Edge Factor $Y_E = 1.5$ 5) Average parapet height is 0.0 ft. 6) Wind speeds are LRFD values.
 - 7) Attachment spacing(s) apply to a seismic design category E or less.

Design Responsibility:

The U-Builder design software is intended to be used under the responsible charge of a registered design professional where required by the authority having jurisdiction. In all cases, this U-builder software should be used under the direction of a design professional with sufficient structural engineering knowledge and experience to be able to:

- Evaluate whether the U-Builder Software is applicable to the project, and
- .

This letter certifies that the Unirac SFM Sunframe Microrail, when installed according to the U-Builder engineering report and the manufacture specifications, is in compliance with the above codes and loading criteria.

certification <u>excludes</u> evaluation of the following components:

- of snow accumulation on the structure.
- 2) The attachment of the SFM 2" Microrail or 8" Attached Splice to the existing structure.
-) The capacity of the solar module frame to resist the loads.

requires additional knowledge of the building and is outside the scope of the certification of this racking system.

have any questions on the above, do not hesitate to call.

ared by: , Inc. – Structural Engineers ville, CA

1) U-builder Online tool analysis is only for Unirac SFM Sunframe Microrail system only and do not

Understand and determine the appropriate values for all input parameters of the U-Builder software.

.) The structure to support the loads imposed on the building by the array; including, but not limited to: strength and deflection of structural framing members, fastening and/or strength of roofing materials, and/or the effects

DATE: 07-13-2021/Rev A FOR: Freedom Forever 43445 Business Park Dr #110 Temecula, CA 92590 USA

JOB: Ayasse, Susan C. 416 East Plum Street Fort Collins, CO 80524

To Whom It May Concern

This letter is to certify that we have performed a structural analysis of the existing roof members that are to support photovoltaic panels, as shown on the attached report. The calculations were performed in accordance with the latest editions of IBC, NDS, ASCE/SEI, CBC, and IRC, and the latest edition of the building codes for the state of Colorado.

Our analysis was based on the following design criteria:

Ground Snow (psf)	35 psf
Sloped Snow (psf), reduced per ASCE, Sect. 7.4	30.9 psf
Basic Wind Speed (mph):	110 mph
Roof Slope:	28 degrees
The PV module orientation:	Landscape
The maximum horizontal roof mount spacing:	2 ft.
The maximum vertical roof mount spacing:	1.708 ft.
Staggered roof mounts required?	No

Based on this analysis, we can certify that the individual existing roof framing members that support the PV panels; and the individual roof members as described in the attached report; are adequate to support the design loads as required by the various codes. This includes Dead Loads (including the weight of the PV panels), Live Loads, Snow Loads, and Wind Loads, on the roof members that support the PV panels, combined as required in the codes.

If you have any questions on this or need further clarification, please contact us at your convenience.

Sincerely, James A. Adams, S.E.

NOTE:

- 1. Prior to commencement of work, the Solar Installer shall verify that the roof framing sizes, spacing, and spans (between supports), are as noted in these plans. The Engineer of Record must be notified if any discrepancies are discovered, before proceeding.
- 2. These plans are Stamped for Structural Code compliance of the roof members that support the PV solar system only.
- 3. These plans are not stamped for rain water leakage prevention.
- 4. As a precaution, old or wet snow should be removed from the roof, if the snow builds up to 18" or more.

Date of Report:07-13-2021/Rev AData Input by:Yunjae ShinContact E-mail:yunjae@solar-roof-check.comContact Phone:7143322701

ABSTRACT

This Report is based on Engineering calculations using the input data supplied by the user, listed under Current Input Data. The user input has not been independently reviewed by a licensed Professional Engineer for appropriateness or accuracy, unless Stamped by a P.E. This Report indicates Compliance/Non-Compliance with the reference Codes listed below. The following items have been checked for Code Compliance:

- Load Combination #1:

Wind Uplift on the Standoff attachment to the Roof Framing members: Wind Uplift - 0.6 * DL Solar

- Load Combination #2: Supporting Rafter Strength with: DL Rf + DL Solar + Roof Live Load

- Load Combination #3:

Supporting Rafter Strength with: DL Rf + DL Solar + Wind Down

- Load Combination #4: Supporting Rafter Strength with: DL Rf + DL Solar + Snow

- Load Combination #5:

Supporting Rafter Strength with: DL Rf + DL Solar + .75Wind + .75Snow

- Load Combination #6: Check Additional Seismic Load

- Load Combination #7: Supporting Rafter Strength with: Wind Up - 0.6 * (DL Rf + DL Solar) Job Name: Ayasse, Susan C. Job Number: F095048 Job Address: 416 East Plum Street Fort Collins, CO 80524

Job Information

Data Input By: Job Number: Job Name: Job Address: City, State: Yunjae Shin F095048 Ayasse, Susan C. 416 East Plum Street Fort Collins, CO 80524

Current Input Data

Payment Method Invoice Roof Type InteriorBearingWall Ceiling Type 1/2 gyp. Bd. Collar Tie Space 0 Coverage % 21.77 Frame Size 2x4@24 Ground Snow (psf) 35 Sloped Roof Snow Load (psf) 30.9 Lag Screw Diam. (in) 5/16 Lag Screw Embed. (in) 2.5 Overall Span (ft) 25 PV Weight (psf) 2.31 PV Module Orientation Landscape Rafter Span (ft) 7.5 Rail System 2Rail Roof Mean Height (ft) 20 Roof Slope (degrees) 28 Roofing Type Comp. Shingle Sloped Ceiling No Max. Horizontal Roof Mount(ft) 2 Max. Vertical Roof Mounts (ft) 1.708 Standoff Staggered No Wind Exposure С Wind Speed (mph) 110

STRUCTURAL CALCULATIONS FOR PV INSTALLATION Prepared for

Freedom Forever 43445 Business Park Dr, #110 Temecula CA, 92590 USA 951-239-3029

USER: COMPANY NAME: SRC JOB ID: JOB REPORT DATE: JOB NUMBER: JOB NAME: JOB ADDRESS: Yunjae Shin Freedom Forever 29936 2021-07-13/Rev A F095048 Ayasse, Susan C. 416 East Plum Street Fort Collins, CO 80524

Program Version: 2020-05-08:7

T

Contact: Support@Solar-Roof-Check.com

Phone: 844-783-5483

USER	INPUT:			
1.	Ceiling Type			:= 1/2 gyp. Bd.
2	Collar Tie Spacing (ft)			:= 0
3.	Roof Coverage %			:= 21.77
4.	. Roof Framing Size			:= 2x4@24
5	Ground Snow (psf)			:= 35
6	. Vertical Snow Load on slope (psf)			:= 30.9
7.	Lag Screw Diameter (in)	:=	d	:= 5/16
8	Lag Screw Embedment (in)	:=	е	:= 2.5
9	Overall Span (ft)			:= 25
1	0. PV Weight (psf)	:=	DL_{pv}	:= 2.31
1	1. Rafter Sloped Span (ft)	:=	Lr	:= 7.5
1.	2. Rail System			:= 2Rail
1	3. Roofing Type			:= Comp. Shingle
14	4. Roof Mean Height (ft)	;=	h	:= 20
1	5. Roof Slope (degrees)	:=	0	:= 28
10	5. Roof Structure Type			:= InteriorBearingWall
1	7. Sloped Ceiling?			:= No
1	8. S _{fh} = RF Mount Horizontal Spacing (ft)			:= 2.00
1	9. S _{fv} = RF Mount Vertical Spacing (ft)			:= 1.71
20	 RF Mount Staggered 			:= No
2	1. Wind Exposure			:= C
2.	2. Wind Speed (mph)	:=	V	:= 110
2	3. L _{pv} =PV Length (in)			:= 70
24	4. $W_{pv} = PV$ Width (in)			:= 41
2	5. Gable, Hip, or Flat/Monoslope			:= Gable Roof
20	5. Roof Overhangs			:= Yes
2	7. S _r = Rafter Spacing (ft)			:= 2.00
23	3. PV Orientation			:= Landscape
29	9. Elevation Above Sea Level (ft)	:=	Elev	:= 4979

FORM	ULA	SYMBOLS:
TAfp	:=	Tributary Area to RF Mounts with Portrait PV Orientation (sf)
TAfl	:=	Tributary Area to RF Mounts with Landscape PV Orientation (sf)
TAr	:=	Tributary Area to Rafters (sf)
γ_{af}	:=	Pressure Equalization Factor for RF Mounts with Portrait PV Orientation
γ_{af}	:=	Pressure Equalization Factor for RF Mounts with Landscape PV Orientation
Yar	:=	Pressure Equalization Factor for Rafters
Plfp	:=	Design Wind Pressure to RF Mounts with Portrait PV Orientation – Zone 1 (psf)
P2fp	:=	Design Wind Pressure to RF Mounts with Portrait PV Orientation – Zone 2 (psf)
Plfl	:=	Design Wind Pressure to RF Mounts with Landscape PV Orientation – Zone 1 (psf)
P _{2fl}	;=	Design Wind Pressure to RF Mounts with Landscape PV Orientation - Zone 2 (psf)
Prup	:=	Design Wind Pressure Up to Rafters (psf)
Prdn	:=	Design Wind Pressure Down to Rafters (psf)
GCp1	:=	External Pressure Coefficient for RF Mounts – Zone 1 (depends on TA Fastener)
GCp2	:=	External Pressure Coefficient for RF Mounts – Zone 2 (depends on TA Fastener)
GCpuj	p :=	External Pressure Coefficient, Wind Up for Rafters (depends on TAr)
GCpd	n :=	External Pressure Coefficient, Wind Down for Rafters (depends on TAr)
S	:=	Snow on Roof (psf)
Sfh	:=	RF Mount Horizontal Spacing (ft)
$\mathbf{S_{fv}}$:=	RF Mount Vertical Spacing (ft)
$\mathbf{S}_{\mathbf{r}}$:=	Rafter Spacing (ft)
Lpv	:=	PV Length (ft)
\mathbf{W}_{pv}	:=	PV Width (ft)
$\mathbf{L}_{\mathbf{r}}$:=	Span of Rafter (ft)

 γ_E := Edge Array Factor

Dead Loads (DL): = psf

Roofing			:= 2.20
Ply			:= 1.50
Rafter			:= 0.65
Miscellaneous (Misc))		:= 1.00
Clg. Joists			:= 0.65
Insulation (Insul)			:= 0.50
Ceiling			:= 2.20
<u>Flat Ceiling</u>	DLtc = Roofing + Ply	+ Rafter + Misc (psf)	;= 5.35
	$DL_{bc} = Clg.joists + In$	nsul. + Ceiling (psf)	:= 3.35
	$wDL_{tc} = DL_{tc} x Sr (pl)$	f)	:= 10.70
<u>Sloped Ceiling</u>	DL _{tc} =DL.tc + Insul	+ Ceiling (psf)	:= N/A
	wDLtc=DLtc x Sr (plf)	:= N/A
DESIGN CRITERIA	ASCE REFERENCE		
Risk Category II	Table 1.5-1		
Importance Factor	Table 1.5-2	I	;= 1.00
Basic Wind Speed	Fig. 26.5-1b	V	:= 110
Wind Directionality	Table 26.6-1	Kd	= 0.85
Exposure Category:	Sect. 26.7.3		:= C
Topographic Factor	Sect. 26.8	K _{zt}	:= 1.00
Elevation above Sea Le	evel Table 26.9-1	Ke	= 0.84
Velocity Pressure Expo Coeff.	sure Table 26.10-1	Kz	:= 0.90
Velocity Pressure	Eq. 26.10-1	qh=.00256 x K _z x K _{zt} x K _d x K _e x V ²	:= 19.79
Edge Array Factor	Sect. 29.4.4	γE (Zone 1) =1.0 γE (Zone2) =1.5	
PV Pressure Equalization Factor	on Fig. 29.4-8	γ_{a}	:= 1.50

RF MOUNT- Wind UP Pressure (Note: Divide TA by 2 for 2 Rail System)

|--|

ASCE REFERENCE		TAfl = Sfh x Lpv	:=	N/A
Fig. 29.4-8		γ_{a}	:=	N/A
Fig. 30.3-2*	Zone 1:	GCp1	:=	N/A
Eq. 29.4-7		$P_{1f} = q_h \times GC_{p1} \times \gamma_E \times \gamma_a$:=	N/A
Fig. 30.3-2*	Zone 2e:	GCp2e	:=	N/A
Eq. 29.4-7		$P_{2ef} = q_h \times GC_{p2e} \times \gamma_E \times \gamma_a$:=	N/A
Fig. 30.3-2*	Zone 2r:	GCp2r	:=	N/A
Eq. 29.4-7		$\mathbb{P}_{2rf} = \mathbb{q}_h \times \operatorname{GC}_{p2r} \times \gamma_E \times \gamma_a$:=	N/A
Landscape Orient	ation:			
ASCE REFERENCE		$TA_{fI} = S_{fh} \times W_{pv}$:=	3.42
Fig. 29.4-8		γ_{a}	:=	1.50
Fig. 30.3-2*	Zone 1:	GCp1	;=	1.80
Eq. 29.4-7		$\mathbf{P}_{1f} = \mathbf{q}_h \times \mathbf{G} \mathbf{C}_{p1} \times \boldsymbol{\gamma}_E \times \boldsymbol{\gamma}_a$:=	53.40
Fig. 30.3-2*	Zone 2e:	GCp2e	:=	2.60
Eq. 29.4-7		$P_{2ef} = q_h \times GC_{p2e} \times \gamma_E \times \gamma_a$:= ^	115.70

Fig. 30.3-2*Zone 2r: GC_{p2r} := 1.80Eq. 29.4-7 $P_{2rf} = q_h \times GC_{p2r} \times \gamma_E \times \gamma_a$:= 80.10

*NOTE: For Flat and Monoslope Roofs, refer to Figures 30.3-5A and 30.3-5B

KAFTER3-	Wind UP Pr	essure				
ASCE F Fig. 2	EFERENCE		$TA_r = S_{fh} \times L_r$ γ_{ar}		:= :=	15.00 0.68
Fig. 3 Eq. 2	:0.3-2 * 9.4-7	Zone 1:	GC _{pup} P _{rup} = q _h ×GC _{pu}	$\rho \times \gamma_E \times \gamma_a$:=	1.62 21.86
RAFTERS-	Wind DOW	N Pressure				
ASCE Fig. 2 Fig. 3	R EFERENCE 29. 4-8 0. 3-2*	Zone 1:	$TA_r = S_{fh} \times L_r$ γ_{ar} GC_{pdn} $P_{ar} = - \sigma_{b} \times GC_{c}$:= := :=	15.00 0.68 0.83
Eq. 2	9.4-7		ran – qn×Gep	$dn \wedge 1E \wedge 1a$		10.00
LOAD COME	3. #1: WINI	DUPLIFT OF	N RF MOUNTS (0.6D) DL - 0.6 Wind Up)	(Cd	=1.6)
LOAD COME	5. #1: WINI t= W W= ⁻	D UPLIFT OF (ithdrawal Ca Fotal Withdra	N RF MOUNTS (0.6E pacity (lb/inch) wal Capacity	DL - 0.6 Wind Up) $W := C_d \times t \times e$	(Cd t W	= 1.6) := 235.00 := 940.00
LOAD COME	8. #1: WINI t= W W= ⁻ P := TA _f × % = W x 10 Code	D UPLIFT OF (ithdrawal Ca Fotal Withdra $(0.6 \times P_{1f} - 0.6)$ $00/P_{1f}$ a Compliant if	N RF MOUNTS (0.60 pacity (lb/inch) wal Capacity $5 \times DL_{PV} \times \cos(\theta \times deg)$ f % is equal to or more	DL – 0.6 Wind Up) $W := C_d \times t \times e$	(Cd t W	=1.6) := 235.00 := 940.00 := 105.29 := 892.8%
LOAD COME ZONE 1	5. #1: WIN t = W W = ⁻ P := TA _f × % = W x 10 Code P := TA _f > % = W x 10 Code	D UPLIFT OF (ithdrawal Ca Total Withdra $(0.6 \times P_{1f} - 0.6)$ $00/P_{1f}$ a Compliant if $< (0.6 \times P_{2ef} - 0)$ $00/P_{2ef}$ b Compliant if	NRF MOUNTS (0.60 pacity (lb/inch) wal Capacity $5 \times DL_{PV} \times \cos(\theta \times deg)$ f % is equal to or more $0.6 \times DL_{PV} \times \cos(\theta \times deg)$ f % is equal to or more	DL - 0.6 Wind Up) $W := C_d \times t \times e$) re than 100% deg))	(Cd t W	= 1.6) := 235.00 := 940.00 := 105.29 := 892.8% := 233.01 := 403.4%

LOAD COMB. #3: On Rafters, Zone 1 DL Rf + DL Solar + Wind Down (Cd = 1.6) $P_{3} \coloneqq TA_{f} \times \left(0.6 \times P_{rdn} + DL_{PV} \times cos\theta\right) \qquad := 39.77$

$$M_{3} \coloneqq \left(wDL_{tc} \times \frac{L^{2}}{8} \right) \times \cos \left(\theta \times deg \right) + P_{3} \times \frac{L}{a} \qquad \qquad := 229.41$$

$$S_r \coloneqq M_3 \times \frac{12}{Fb \times Cd_{Wind} \times Cf_x \times C_r \times C_{LS}} = 1.00$$

$$\% \coloneqq \frac{S_x \times 100}{S_r} \quad << \text{ If equal to or more than } 100\% \text{ Code Compliant, OK!} \qquad := 306.8\%$$

LOAD C	OMB. #4:	On Rafters	DL Rf +	DL Solar +	Snow (Cd=1.	15)
					- NAM TARABANANANANA MARANANANANANANANANANANANANANANANANANANA	Comments of the second s

S:=Sloped Roof Snow Load (psf)	:= 30.90
$P_4 \coloneqq TA_f \times \left(DL_{PV} \times S \right)$:= 113.47
$M_4 \coloneqq \left(wDL_{tc} \times \frac{L^2}{8} + P_4 \times \frac{L}{a} \right) \times \cos \left(\theta \right)$:= 477.03
$S_r \coloneqq M_4 \times \frac{12}{Fb \times Cd_{Snow} \times Cf_x \times C_r \times C_{LS}}$:= 2.89
$\% = \frac{S_x \times 100}{S_r}$ << If equal to or more than 100% code compliant, ok!	:= 106.0%

LOAD COMB. #5: On Rafters, Zone 1 DL Rf + DL Solar + .75Wind + .75Snow (Cd=1.6)

S:=Sloped Roof Snow Load (psf)	:= 30.90
$P_{5} \coloneqq TA_{f} \times (DL_{PV} + .75 \times S) \times cos\theta + TA_{f} \times 0.75 \times 0.6 \times p_{rdn}$:= 101.48
$M_{5} \coloneqq \left(wDL_{tc} \times \frac{L^{2}}{8} + P_{5} \times \frac{L}{a} \right) \times \cos \left(\theta \right)$:= 482.34
$S_r \coloneqq M_5 \times \frac{12}{Fb \times Cd_{Wind} \times Cf_x \times C_r \times C_{LS}}$:= 2.10
$\% = \frac{S_x \times 100}{S_r}$ << If equal to or more than 100% Code Compliant, OK!	<u>:</u> =145.9%

LOADING COMB. #6: CHECK SEISMIC LOADING: C=COVERAGE ON ROOF

Existing $DL:= DL_{Rf} + Wall$	ls Walls:= 5.5 psf	:=	14.20
ProposedDL:=ExistingDL	+ DL _{Solar} x C	:=	14.70
SeismicIncrease $= 100 \times \left(\frac{F}{L}\right)$	$\left(\frac{ProposedDL}{ExistingDL}\right) - 100 << $ If equal to or more than 10% Code Compliant, OK!	:=	3.5%

SEISMIC SUMMARY: EXISTING BUILDING PROVISIONS

Section 11B.3- Exceptions:

- 1. The addition complies with the requirements for new structures.
- 2. The addition does not increase the seismic force by more than 10%.
- 3. The addition does not decrease the seismic resistance of any structural element.

LOAD COMB. #7: O	n Rafters, ZONE 1	(0.6)(DL RF + DL SOLAR) -	WIND UP (CD=1.6)
$P_7 \coloneqq TA_f \times \big(0.6 \times \mu \big)$	$p_{rup} - 0.6 \times DL_{PV} \times 0$	<i>cosθ</i>) :=	40.63
$M_7 \coloneqq \left(P_7 \times \frac{L}{a} \right) - wDL$	$_{tc} \times \frac{L^2}{8} \times cos (\theta \times deg$) :=	126.65
$S_r \coloneqq M_7 \times \frac{1}{Fb \times Cd_W}$	$\frac{12}{ind \times Cf_x \times C_r \times C_{LS}}$:=	0.55
$\% \coloneqq \frac{S_x \times 100}{S_r}$	< <if equal="" n<br="" or="" to="">COMPLIANT, OK!</if>	MORE THAN 100% CODE :=	555.7%

LIMITS OF SCOPE OF WORK AND LIABILITY

Note:

- 1. Prior to commencement of work, the Solar Installer shall verify that the roof framing sizes, spacing, and spans (between supports), are as noted in these documents. The Engineer of Record must be notified if any discrepancies are discovered, before proceeding.
- 2. These documents are Stamped for Structural Code compliance of the roof members that support the PV solar system only.
- 3. These documents are not stamped for rain water leakage prevention.
- 4. As a precaution, old or wet snow should be removed from the roof, if the snow builds up to 18" or more.
- 5. Existing deficiencies which are unknown and not observable due to their being concealed inside walls or sandwiched behind gypsum board ceilings at the time of inspection are not included in the scope of work. These calculations are only for the roof framing which supports the new PV modules. These calculations do not include a complete lateral analysis of the building, nor a prediction of the life expectancy of the existing building.

Appendix

Table 3 represents the maximum Moment (M = PL/a) resulting from point loads (RF Mounts), for any spans (L) listed.

a = **1.83**

TABLE 3

	The Moment	Factor "a" for a	a 2 Rail Syst	em	The Mom	ent Factor "a	a" for a Railless	or Shared Ra	ail System
	Stag	gered	Unst	aggered		Staggered		Unstaggered	
Length	Portrait	Landscape	Portrait	Landscape	Length	Portrait	Landscape	Portrait	Landscape
L = 4'	4.00	4.00	4.00	2.91	L = 4'	5.00	5.00	5.00	5.00
L = 5'	4.00	3.50	3.72	2.50	L = 5'	5.00	5.00	5.00	5.00
L = 6'	4.00	3.00	3.43	2.09	L = 6'	5.00	5.00	5.00	5.00
L = 7'	3.60	2.84	2.95	1.83	L = 7'	4.50	4.50	4.50	4.19
L = 8'	3.20	2.67	2.46	1.56	L = 8'	4.00	4.00	4.00	3.37
L = 9'	3.03	2.59	2.34	1.44	L = 9'	4.00	4.00	4.00	3.12
L = 10'	2.86	2.50	2.22	1.31	L = 10'	4.00	4.00	4.00	2.86
L = 11'	2.77	2.25	2.04	1.19	L = 11'	4.00	4.00	3.70	2.48
L = 12'	2.67	2.00	1.85	1.07	L = 12'	4.00	4.00	3.39	2.09
L = 13'	2.61	1.88	1.74	0.90	L = 13'	4.00	3.87	3.35	1.98
L = 14'	2.55	1.75	1.62	0.92	L = 14'	4.00	3.73	3.30	1.87
L = 15'	2.51	1.68	1.50	0.86	L = 15'	4.00	3.32	2.88	1.78
L = 16'	2.46	1.60	1.38	0.81	L = 16'	4.00	2.90	2.46	1.68
L = 17'	2.43	1.45	1.31	0.76	L = 17'	4.00	2.74	2.36	1.57
L = 18'	2.40	1.29	1.23	0.72	L = 18'	4.00	2.57	2.25	1.45
L = 19'	2.38	1.24	1.17	0.68	L = 19'	4.00	2.46	2.18	1.38
L = 20'	2.35	1.18	1.11	0.65	L = 20'	4.00	2.35	2.11	1.30
L = 21'	2.22	1.14	1.06	0.62	L = 21'	4.00	2.28	2.06	1.25
L = 22'	2.09	1.10	1.00	0.59	L = 22'	4.00	2.20	2.00	1.20

REFERENCES: LATEST EDITION

Durat	ion	<u>Factors</u>		Section Modules					Size Form Factor			
Cdwinc	1 :=	1.6	Sx	:=	3.06	S _{2x12} :=	31.640	Cf _{2x2} :=	1.5	Cf _{4x4} :=	1.5	
Cd _{snov}	v:=	1.15	S _{2x2}	:=	0.563	S _{4x4} :=	7.150	Cf _{2x4} :=	1.5	Cf _{4x6} :=	1.3	
Cd _{DL}	:=	0.9	S _{2x4}	:=	3.063	S _{4x6} :=	17.650	Cf _{2x6} :=	1.3	Cf _{4x8} :=	1.3	
Cd _{LL}	:=	1.25	S _{2x6}	:=	7.563	S _{4x8} :=	30.660	Cf _{2x8} :=	1.2	Cf _{4x10} :=	1.2	
CLS	:=	1.00	S _{2x8}	:=	13.140	S _{4x10} :=	49.900	Cf _{2x10} :=	1.1	Cf _{4x12} :=	1.1	
Fb	;=	1000	S2x10	:=	21.390	S _{4x12} :=	73.800	Cf _{2x12} :=	1.0			