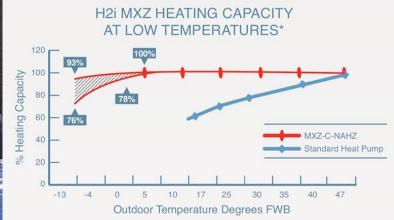


Heat Pumps In Colorado: A Cleaner, More Efficient Option to Heat and Cool Homes

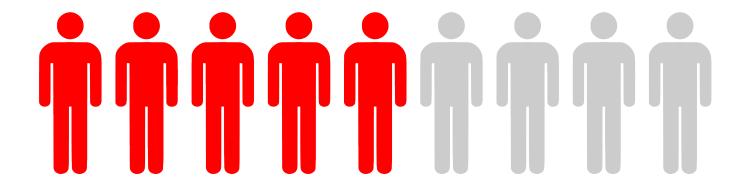
Cold Climate Air Source Heat Pump Strategies


08-24-2021

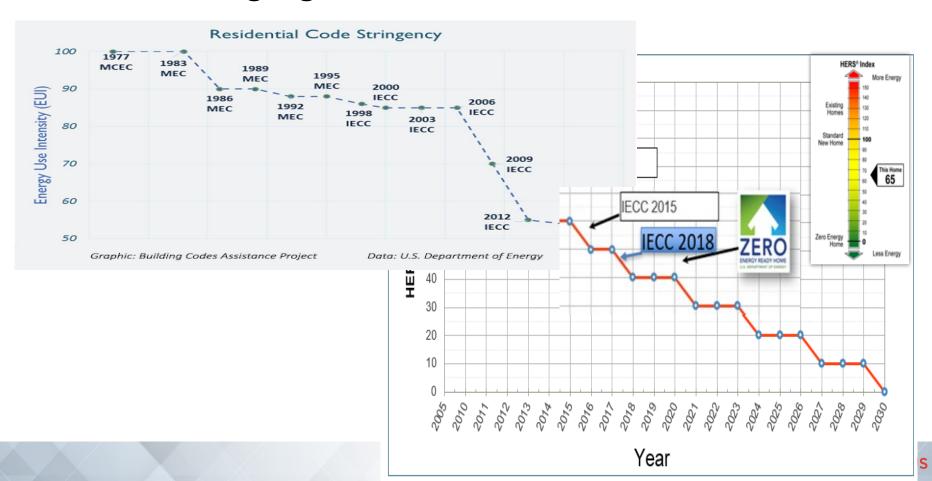
Shawn LeMons

Performance Construction Mgr.

(Former BPI, IECC, RESNET, LEED, PHIUS)



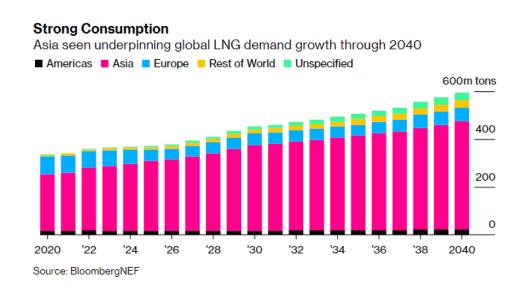
ASHP International Market


Did you know?

Well over 50% of U.S. HVAC contractors do not size heating & cooling correctly.

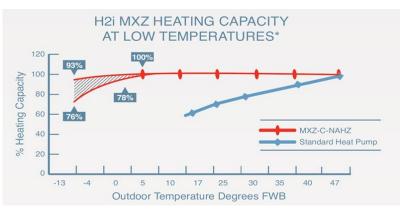
source: U.S. Department of Energy - 2016

Codes Changing Over Time


NG Costs Changing Over Time

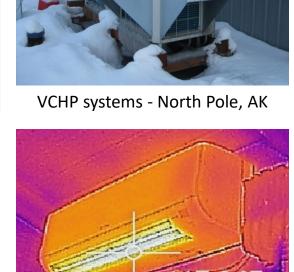
Bloomberg News

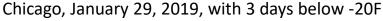
The Era of Cheap Natural Gas Ends as Prices Surge by 1,000%

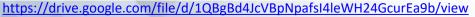

August 5, 2021, 6:00 PM MDT

The era of cheap natural gas is over, giving way to an age of far more costly energy that will create ripple effects across the global economy.

What is a "Cold Climate" ASHP?






100% capacity at 5 F
76%-93% capacity at -13 F*
Operation down to -18 F and lower*

* Varies by outdoor model

Heat Pumps Have Evolved

CEE Case Study 2 (MN, June '18)

Table 1. A comparison of the weather normalized annual performance for several heating systems in this Minneapolis home.

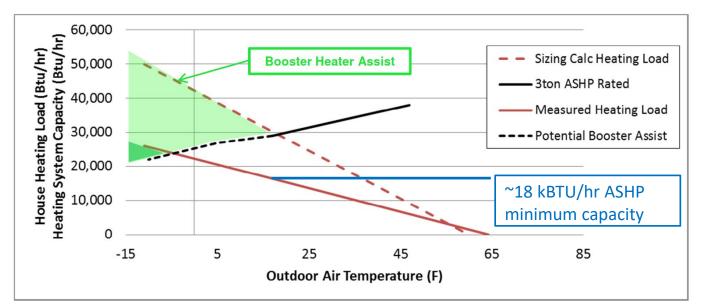
	Heating Load	Annual COP	Electric Use	LPG use	Natural Gas Use	Total Energy Use	Annual Operating Costs ¹	Emissions 2 CO ₂
	mmBtu	-	kWh	therms	therms	mmBtu	\$	eqiv Ibs
ccASHP w/ ER boost	63.1	1.84	10,075	0	0	34.3	\$1,310	11,499 ³
Electric Resistance	63.1	0.99	18,491	0	0	63.0	\$2,404	21,104
LPG Furnace	63.1	0.79	503	747	0	76.4	\$1,404	11,650
Natural Gas Furnace	63.1	0.79	503	0	747	76.4	\$807	9,699

- 1. Average residential pricing in 2017 for propane, natural gas, and electricity from Energy Information Administration were \$0.13/kWh for electricity, \$1.57/gallon for LPG, and \$0.95/therm for natural gas.
- 2. Monthly average emissions in 2017 monthly were used. For electricity, 1.14 equivalent lb/kWh, 11.7 lb/therm for natural gas, and 13.0 lb/gal for LPG. (See Edwards et al 2018).
- 3. Using the NSP value of 0.894 lbs/kWh¹ the ccASHP with ER booster annual emissions would be 9,007 equiv. lbs, a 2% reduction over the natural gas furnace.

Site Characteristics

- 2 bedroom, one bath, 1.5 story single-family home
- 1924 Bungalow, 1600 sqft, with efficiency upgrades
- 50,000 btu/hr heating load calculation at -11°F
- 26,000 btu/hr measured heating load at -11°F
- 61,000 btu/hr electric heat strip

PVA-A36



PUZ-HA36NHA5

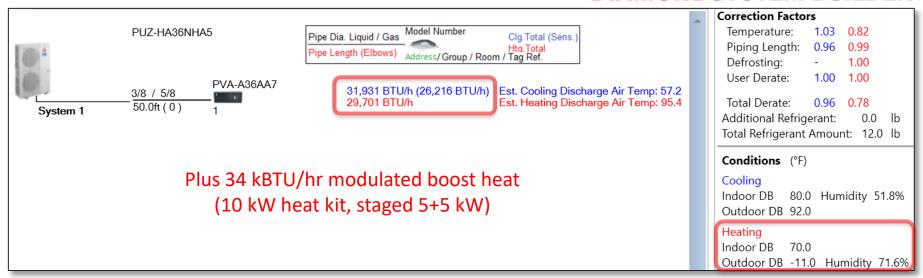
CEE Case Study 2 (MN, June '18)

Figure 3. Capacity vs. Outside Air Temperature

Site Characteristics

- 2 bedroom, one bath, 1.5 story single-family home
- 1924 Bungalow, 1600 sqft, with efficiency upgrades
- 50,000 btu/hr heating load calculation at -11°F
- 26,000 btu/hr measured heating load at -11°F
- 61,000 btu/hr electric heat strip

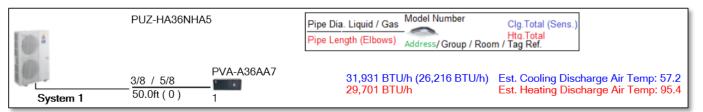
PVA-A36


PUZ-HA36NHA5

CEE Case Study 2 (MN, June '18)

If the load calc was closer to the 26 kBTU/h heat load...

DIAMONDSYSTEM BUILDER



Verify system combination and capacity at design conditions.

Use this capacity and other spec sheet details for Manual S & Manual D compliance.

CEE Case Study 2 – Manual S Decision

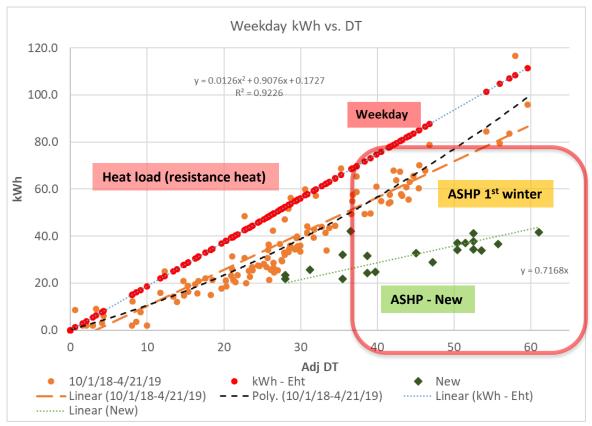
1 outdoor 1 ducted indoor 18.6 kBTU/hr min **Heat** ~1400 Watts at ~20°F

or...

2 separate systems:
Ducted for rooms
Ductless for Liv & Kit
2.9 kBTU/hr min Heat
~200 Watts at ~60°F

Cooling minimums:

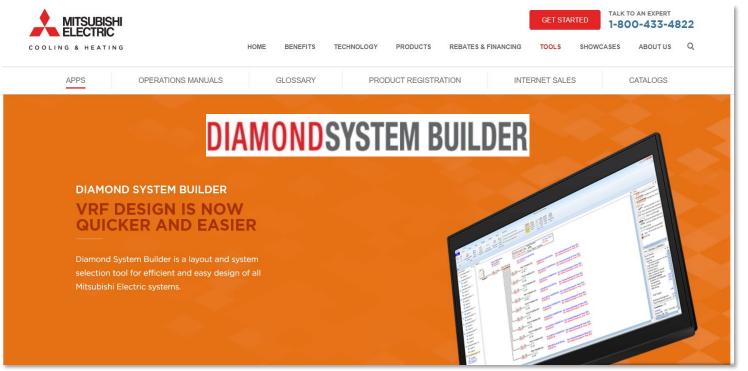
15.5 kBTU -> 2.3 ~1170 Watts -> ~170 18.2 SEER -> 25.5



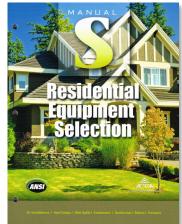
NESEA 2019 study

Site Characteristics

- Hinesberg, VT outside of Burlington
- 1850 farm house deep-retrofit to net zero standards.
- R-60 ceiling, R-40 walls, R-20 slab edge
- 2,800 sf Energy Futures Group offices
- -11 °F heating, 86 °F cooling
- Extreme lows, -21 to -30 °F

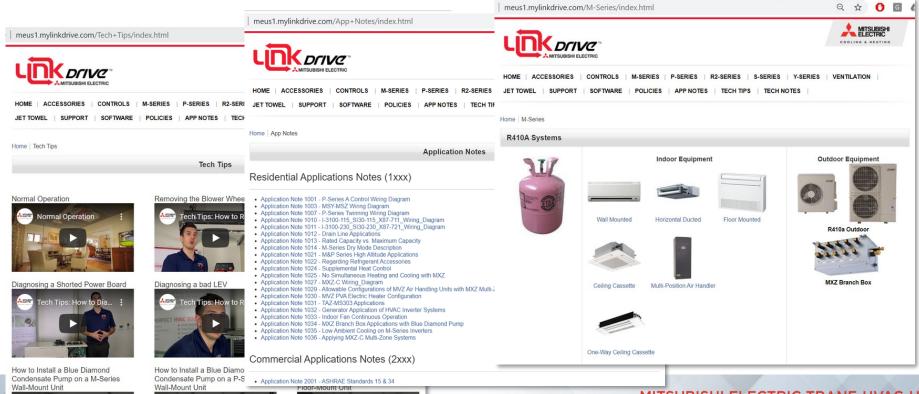

Fall 2021 Install @ 11,300 ft Elevation

Ski Patrol and Warming Hut



Design Resources

Extensive tools for Architects, Builders, Designers, Installers



Use DSB with Manual S equipment selection

Design Resources

Extensive tools for Architects, Builders, Designers, Installers

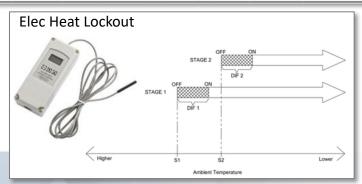
Backup Heat

Onboard logic to manage electric heat when needed.

Mode Change	Condition									
	(To -T _{RA}) > 2.7 ° F [1.5 °C]	AND	T _{RA} has not increased by 0.9 °F [0.5° C] in <u>X</u> min	EH1 ON for > 7 min	AND	(To -T _{RA}) > 2.7 ° F [1.5 ° C]	AND	T _{RA} has not increased by 0.9 ° F [0.5° C] in 7 min	(To -T _{RA}) < 0.9 °F [0.5° C]	
EH1 ON	0	AND	0							
EH2 ON				0	AND	0	AND	٥		
EH1 OFF									0	
EH2 OFF									0	

Engage 3rd party heat sources

KEY

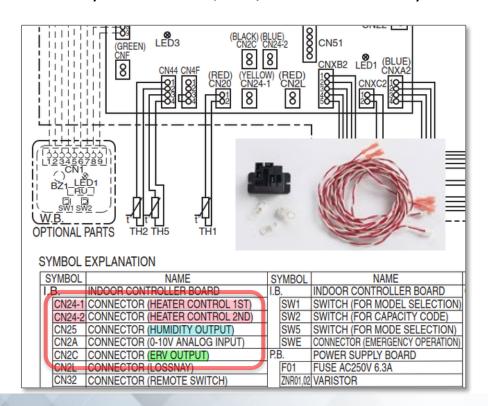

• EH1: Electric Heater 1

• EH2: Electric Heater 2

• To: Set point temperature

• TRA: Return Air temperature

• X: Time delay (Selectable. Default is 24 min. Selectable to 14, 19, or 29 min)

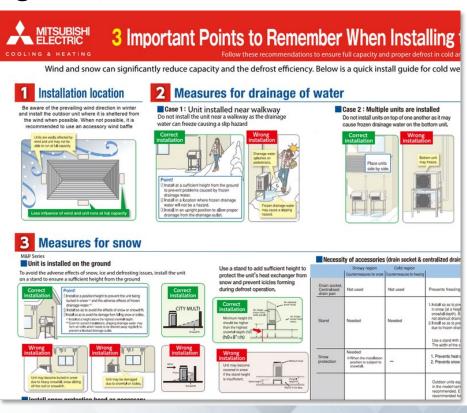


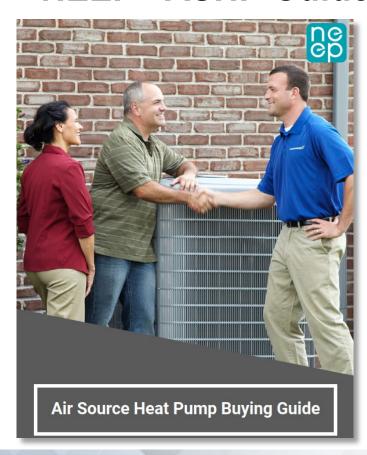
Integrate Other Equipment

3rd Party Thermostats, ERV/HRV and Humidity Fan Integration

Cold Climate Installation Guidelines

Need to managing drainage, ice, and snow level





Good, but...

Better

NEEP - ASHP Guides

Part 1: Air Source Heat Pumps - The Basics

https://neep.org/sites/default/files/resources/ASHP buyingguide 5.pdf

Features of Air Source Heat Pumps

Getting The Most Out of Your Heat Pump

 $\underline{https://neep.org/sites/default/files/GettingTheMostFromYourHeatPumpConsumerGuideFINAL.pdf}$

Settings are the Key to Great Heat Pump Performance

Use these settings, whether your heat pump is ducted or ductless, to maximize savings and improve your comfort:

Pro Tip! if your central heat is oil or propane, you can expect your electric bill to increase significantly in cold weather.

Set it and Forget it

- Avoid frequently adjusting the thermostat; try to keep indoor settings steady.
- It's fine to adjust temperatures up and down as needed for comfort (e.g. turn it down at night if you like it a bit cooler).
- · However, unlike conventional heating systems, deep setbacks of cold-

That said...

"Let's Build Like The Future Depends On It"

- 475 High Performance Building Supply

Questions?

Shawn LeMons

Performance Construction Mgr.

(Former BPI, IECC, RESNET, LEED, PHIUS) slemons@hvac.mea.com
720-648-0505