

Advanced Building Science for Mainstream Construction

Building Envelope Science | Passive House Design | Air & Moisture Flow Management

The Healthy Side of Zero-Energy: Passive House Buildings

Building Envelope Science | Passive House Design | Air & Moisture Flow Management

Healthy Side of Zero-Energy

- Energy Conservation, Compensation, and Lock-In Risk
- Climate, Assembly Design and Heat Losses
- Thermal Bridges, Mold, Condensation
- Windows/Doors, Thermal Comfort
- Indoor Air Quality
- Durability and Resilience

Conservation vs Compensation

Passive Solar

Net Zero

Passive House

Lock-In Effect vs Dramatic Impact

Leave the use of 'green electricity' to other sectors, because it is more difficult for them to implement it (e.g. transportation).

Buildings can reduce energy demand by 90%

'Net Zero' is a fashionable term, but <u>demand reduction is the most important part</u> of the picture for buildings

Example:

Building near Fraser, CO

Climate Zone 7

Heating Demand -85% compared to 2018 IECC, thanks to PH Envelope

Size, Form, Orientation, Shading

Architectural design has a huge impact on performance of a building

Besides orientation, size, form factor, and shading are architects' tools for energy efficiency

Emu Pilot Program

Standardized construction methods that are 'good enough' to achieve Passive House and Net Zero

Goal: enabling the 'guy with a pickup truck and a nail gun' to build Passive House

No No

System #1 (2017 on): new construction

System #2 (2019 on): retrofit

System #3 (TBD): mixed use

Millhaus Project

Single Family, 2,840 ft2 TFA Climate 5 Stick frame, site built (self)

Ground Coupling: 0.52 Energy balance heating (monthly method) 80 70 11.6 60 13.2 50 48.2 Heat flow [kWh/(m²a)] 9.8 40 5.9 30 22.2 20 13.4 10

Losses

Gains

Form Factor: 4.23 ft2/ft2

Main Orientation: 190°

Non-useful heat gains External wall - Ambient . Roof/Ceiling - Ambient Floor slab / Basement ceiling -Unconditioned Garage Windows Exterior door Ventilation solar gains

> internal heat gains heating demand

Passive House Thermal Envelope

- Thermal Insulation/Mass
- Avoiding Thermal Bridges
- Quality Windows/Doors
- Indoor Air Quality
- Air Tightness

Thermal Insulation and Thermal Mass

Thermal Insulation

- keeps heat in or out
- keeps sound in or out
- allows easier control over internal environment
- protects from swings of external temperature
- reduces need for heating/cooling

Thermal Mass

- improves uses of solar gains
- helps balancing temperature (and moisture)

Passive House Thermal Envelope

Thermal Insulation

- All envelope assemblies to be insulated
- Larger building require less insulation
- in Climate 5:
 - R40-50 for walls, incl. to unconditioned/ground
 - R25-30 for floors, incl. on grade
 - R40-60 for roof/ceiling

Thermal Mass

- exposed mass one counts most
- driven by climate and use

Thermal Bridges

Weak Spots in the Thermal Envelope

Worse Energy Performance

Risk of mold/condensation

fRsi value: minimum local temperature

PSI value: heat flow (compared to U-value calculation)

The	ermal B	ridg	ges	- St	eel			
A Constant of the second secon	si_min							
	Metal	Beam T	hermal	Bridge				
Average Room	Temperature		Exte	rnal Temp	erature, Te	e [°F]	The second s	
Temperature, Ti [°F]	Factor - fRsi Value	50.0	40.0	30.0	20.0	10.0	0.0	
70.0	[-]	Local Minimum Temperature, Tsi_min [°F]						
Unmitigated	0.648	63.0 59.4 55.9 52.4 48.9 45.4				48.9		
Mitigated	0.902	68.0	67.1	66.1	65.1	64.1	63.1	

Quality Windows/Doors

- Holes in the thermal envelope
- Provide passive solar gains (free heating)
- Critical for mold/condensation

Windows: What About Comfort?

Windows: What About Condensation?

CONDENSATION RISK	Traditional Timber Frame Series, Casement Profile, Douple Pane Glass, low-e on #2 and #4, Stainless Steel Spacer					CONDENSATION RISK	Alpen Tyrol PH+ Series, Tilt/Turn Profile, Thin Triple Glass + Warm Edge Spacer				
		Exte	rnal Temperature	[°F]			External Temperature [°F]				
Room Average Relative Humidity	10.0	20.0	30.0	40.0	50.0	Room Average	10.0	20.0	30.0	40.0	50.0
	Local Relative Humidity at Glass Edge					Relative Humidity	Local Relative Humidity at Glass Edge				
20%	64.5%	52.1%	42.6%	35.1%	29.0%	20%	28.4%	26.9%	25.4%	24.0%	22.6%
30%	95.9%	77.5%	64.4%	52.1%	43.0%	30%	42.3%	39.9%	37.6%	35.7%	33.7%
40%	100.0%	100.0%	85.3%	70.1%	57.9%	40%	56.8%	53.8%	50.6%	48.0%	45.3%
50%	100.0%	100.0%	100.0%	87.2%	72.0%	50%	70.6%	66.8%	63.0%	59.6%	56.3%
60%	100.0%	100.0%	100.0%	100.0%	86.9%	60%	85.2%	80.7%	76.0%	72.0%	67.9%

Who's in Charge?

15

10

5

-5

CONDENSATION RISK Room Average Relative Humidity	Traditional Timber Frame Series, Casement Profile, Douple Pane Glass, and #4, Stainless Steel Spacer								
	External Temperature [°F]								
	10.0 20.0 30.0		40.0						
	Local Relative Humidity at Glass Edge								
20%	64.5%	52.1%	42.6%	35.1%					
30%	95.9%	77.5%	64.4%	52.1%					
40%	100.0%	100.0%	85.3%	70.1%					
50%	100.0%	100.0%	100.0%	87.2%					
60%	100.0%	100.0%	100.0%	100.0%					

2018 IECC Windows

Transmission losses heating period Heating gains solar radiation heating period

8,000 6,000

Passive House Windows

- Windows = Solar Collectors
- At least one operable window per main occupancy room
- In Climate 5:
 - Uw inst ≤ 0.15
 - Uw ≤ 0.14
 - insulated wood or PVC frame, thermally broken aluminum or steel
 - triple pane glass w/ low-e coating
 - warm edge spacer (plastic)
 - Argon or Krypton gas fill
 - SHGC by project/climate

(same applies to doors, curtain emu walls, skylights, sun tubes etc.)

Passive House Windows

Ventilation, With Heat Recovery

Passive House Thermal Envelope

Indoor Air Quality

- continuous filtered ventilation via mechanical system
- ERV or HRV, depending on climate/occupancy
- heat recovery > 75%
- integrated extract for e.g. bathrooms (no separate extract)
- separate exhaust for kitchen (for cleanliness

Air Tightness and Building Durability

Moisture-driven Building

Damages

- loss in performance
- biological decay (materials rot)
- corrosion

Air Convection: carries up to <u>30 times</u> more moisture than Vapor Diffusion

Cemu

Air Convection

•••••• Vapor Diffusion

Withi buildings becoming more insulated and airtight, thorough design a accurate installation are critical

Passive House Thermal Envelope

Air Tightness

- ≤ 0.6 ACH50
- preliminary test recommended before drywall
- larger buildings: easier to meet

Thermal Resiliency

High Time Constant: combination of high thermal insulation, quality windows/doors, air tightness, and heat storage Builder Training in Arvada, CO: proof of concept at the end of

hands-on workshop

Thermal Resiliency

High Time Constant: combination of high thermal insulation, quality windows/doors, air tightness, and heat storage

Thermal resiliency basic simulation on Millhaus project shows same thermal behavior

It's Never Too Late!

The same principles apply to **new builds** as well as **energy retrofits** Up to **95%** energy saving* potential compared to <u>existing buildings</u> -94% Up to **75%** energy savings* compared to <u>new buildings</u> *<u>Net demand</u> for heating/cooling, <u>before</u> renewables are factored in

92 kBTU/ft²y % 5.38 kBTU/ft²y

Does Passive House Cost More?

- single family
- multi family
- schools
- hotels
- hospitals
- offices
- factories
- supermarkets
- museums

- probably yes

– probably no

cost-effectiveness requires:

- clear goals
- realistic expectations
- integrated design
- clear understanding of what PH is, and what it is not.

What Will Cost More?

More Expensive

 Windows, Windows, Windows, Windows

> In Climate 5: typical Uvalues of 0.14 (as opposed Code windows at 0.32) – also applies to external doors, curtain walls etc.

Cheaper

- Heating/Cooling Equipment
 - Typical heating/cooling loads reduced indicatively by factor 5
- PV System for Net Zero Typical system size reduced by factor 3

•••

- Thermal Insulation
- Air Sealing

lemu

What Will Break Sooner?

Healthy Side of Zero-Energy

- Passive House building envelope is a streamlined path to Net Zero
- Compared to conventional buildings, 75-90% of heating/cooling demand can be avoided by good envelope design
- Size of heating/cooling equipment can be reduced by factor 5, renewables systems (PVs) can be reduced by a factor 3
- Quality of building components incl. assemblies, windows/doors etc. influence comfort and hygiene (mold/condensation) besides energy efficiency
- Highly insulated, air tight building are more durable and resilient than conventional buildings

The Healthy Side of Zero Energy Passive House Buildings

Buildings are for People

