Conceptual Review Agenda

Schedule for 04/04/16 to 04/04/16

281 Conference Room A

Monday, April 4, 2016				
Time	Project Name	Applicant Info	Project Description	Planner
9:30	1519 Cedarwood Dr -Single-family Detached CDR160026	Blake Bush (970) 402-2400 blake.bush@yahoo.com	This is a request to build a second home on the lot located at 1519 Cedarwood Dr (parcel \#9716398001). The proposed home would be two stories and have $1,190 \mathrm{sq}$. ft. of floor area. The new home and existing home would share a driveway. The lot is $14,802 \mathrm{sq}$. ft. The parcel is located in the Low Density Residential (RL) zone district. This request will be subject to Administrative (Type I) review.	Noah Beals
10:15	Vineyard/Goldelm ODP CDR160027	Michael Chalona (970) 449-4100 mchalona@logansimpson.com	This is a request to master plan and develop three parcels on S College Ave (Parcel \#'s 9611100901, 9611100003 \& 9611100031). This coordinated development of this site will result in the construction of a shared private drive connecting the intersection of Venus Ave and Crestridge St with a right in and right out to S. College Ave north of the property. A new lot will also be created through this development on the east side of the private drive. The parcels are located in the Medium Density Mixed-Use Neighborhood (MMN) and Service Commercial (CS) zone districts. This proposal will be subject to Planning \& Zoning Board (Type II) review.	Jason Holland

Monday, April 4, 2016

Time	Project Name	Applicant Info	Project Description	Planner
11:00	Centre for Advanced Technology - Single-family Attached CDR160028	Cathy Mathis (970) 532-5891 cathy@tbgroup.us	This is a request to construct 34 units of single-family attached units (parcel \#9723000904). The units will be organized around private drive leading from Worthington Ave. This development is proposed on Parcel B of the Centre for Advanced Technology Amended ODP adopted in January of 2012. The site is located in the Employment (E) zone district. This proposal will be subject to Planning \& Zoning Board (Type II) review.	Clay Frickey

1519 Cedarwood Dr Single-family Detached

These map products and all underlying data are developed for use by the City of Fort Collins for its internal purposes only, and were not designed or intended for general use by members of the public. The City makes no representation or warranty as to its accuracy, timeliness, or completeness, and in particular, its accuracy in labeling or displaying dimensions, contours, property boundaries, or placement of location of any map features thereon. THE CITY OF FORT COLLINS MAKES NO WARRANTY OF MERCHANTABILITY OR WARRANTY FOR FITNESS OF USE FOR PARTICULAR PURPOSE, EXPRESSED OR IMPLIED, WITH RESPECT TO THESE MAP PRODUCTS OR THE UNDERLYING DATA. Any users of these map products, map applications, or data, accepts same AS IS, WTH ALL FAULTS, and assumes all responsibiity of the use thereof, and further covenants and agrees to hold the City harmless contained herein should be obtained by any users of these products, or underlying data. The City disclaims, and shall not be held liable for any and all damage, loss, or liability, whether direci, indirect, or consequential, which arises or may arise from these map products or the use thereof by any person or entity

CONCEPTUAL REVIEW:

APPLICATION

General Information

All proposed development projects begin with Conceptual Review. Anyone with a development idea can schedule a Conceptual Review meeting to get feedback on prospective development ideas. At this stage, the development idea does not need to be finalized or professionally presented. However, a sketch plan and this application must be submitted to City Staff prior to the Conceptual Review meeting. The more information you are able to provide, the better feedback you are likely to get from the meeting. Please be aware that any information submitted may be considered a public record, available for review by anyone who requests it, including the media.
Conceptual Reviews are scheduled on three Monday mornings per month on a "first come, first served" basis. One 45 meeting is allocated per applicant and only three conceptual reviews are done each Monday morning. Conceptual Review is a free service. Complete applications and sketch plans must be submitted to City Staff no later than 5 pm, two Tuesdays prior to the meeting date. Application materials must be e-mailed to currentplanning@fcgov,com. If you do not have access to e-mail, other accommodations can be made upon request.

At Conceptual Review, you will meet with Staff from a number of City departments, such as Community Development and Neighborhood Services (Zoning, Current Planning, and Development Review Engineering), Light and Power, Stormwater, WaterMaste Water, Advance Planning (Long Range Planning and Transportation Planning) and Poudre Fire Authority. Comments are offered by staff to assist you in preparing the detailed components of the project application. There is no approval or denial of development proposals associated with Conceptual Review. At the meeting you will be presented with a letter from staff, summarizing comments on your proposal.
BOLDED ITEMS ARE REQUIRED *The more info provided, the more detailed your comments from staff will be.*
Contact Names) and Roles) (Please identify whether Consultant or Owner, etc)
Blake Bush
Business Name (if applicable)
Your Mailing Address $\quad 1519$ Cedar wood Dr
Phone Number $970.402-2400$ Email Address blake busheyahoo.com Site Address or Description (parcel\# if no address) _1519 Cedarconod or Fe 805%

Description of Proposal (attach additional sheets if necessary)
 Proposed Use Single Family Residence Existing Use Yard
Total Building Square Footage 1280 ? s.F. Number of Stories 1-2? Lo Total Building Square Footage 1280 ? S.F. Number of Stories 1-2? Lot Dimensions Double lot - 14,000 sf Age of any Existing Structures I built my home in 2081
Info available on Latimer County's Website: http://www.Co.larimer.co.us/assessor/query/search.cfm
If any structures are $50+$ years old, good quality, color photos of all sides of the structure are required for conceptual.
Is your property in a Flood Plain? \square Yes \square No ? If yes, then at what risk is it?
Info available on FC Maps: http://gisweb.fcgov.com/redirect/default.aspx?layerTheme=Floodplains.
Increase in Impervious Area $\frac{10 े 0}{} 650$ s.F.
SF.
(Approximate amount of additional building, pavement, or etc. that will cover existing bare ground to be added to the site)

Suggested items for the Sketch Plan:

Property location and boundaries, surrounding land uses, proposed uses), existing and proposed improvements (buildings, landscaping, parking/drive areas, water treatment/detention, drainage), existing natural features (water bodies, wetlands, large trees, wildlife, canals, irrigation ditches), utility line locations (if known), photographs (helpful but not required). Things to consider when making a proposal: How does the site drain now? Will it change? If so, what will change?

Proposed single family dwelling on an existing double lot. Shared driveway with 1519 Cedarwood Dr. Utilities, water, and power would be separate.

Proposal for 1519 Cedarwood Drive in FC

Community Development and

April 15, 2016

Blake Bush
1519 Cedarwood Dr
Fort Collins, CO 80521
Re: 1519 Cedarwood Dr - Single-family Detached
Description of project: This is a request to build a second home on the lot located at 1519
Cedarwood Dr (parcel \#9716398001). The proposed home would be two stories and have 1,190 sq. ft. of floor area. The new home and existing home would share a driveway. The lot is $14,802 \mathrm{sq}$. ft. The parcel is located in the Low Density Residential (RL) zone district. This request will be subject to Administrative (Type I) review.

Please see the following summary of comments regarding the project request referenced above. The comments offered informally by staff during the Conceptual Review will assist you in preparing the detailed components of the project application. Modifications and additions to these comments may be made at the time of formal review of this project. If you have any questions regarding these comments or the next steps in the review process, you may contact the individual commenter or direct your questions through the Project Planner, Noah Beals, at 970-416-2313 or nbeals@fcgov.com.

Comment Summary:

Department: Water-Wastewater Engineering
 Contact: Shane Boyle, 970-221-6339, sboyle@fcgov.com

1. Existing water and sewer mains in the vicinity include a 6 -inch water main on the west side of Cedarwood Drive and a 15 -inch sanitary sewer main along the eastern edge of this parcel.
2. New water and sewer services will be required to serve the new house; it cannot be served from the services already in place for the existing house.
3. The water conservation standards for landscape and irrigation will apply. Information on these requirements can be found at: http://www.fcgov.com/standards
4. Development fees and water rights will be due at building permit.

Department: Traffic Operations

Contact: Martina Wilkinson, 970-221-6887, mwilkinson@fcgov.com

1. The anticipated change in traffic volume is not expected to rise to the threshold of needing a TIS. Based on section 4.2.3.D of LCUASS, the Traffic Impact Study requirement can be waived.
2. no further comments.

Department: Stormwater Engineering

Contact: Shane Boyle, 970-221-6339, sboyle@fcgov.com

1. The design of this site must conform to the drainage basin design of the Canal Importation Master Drainage Plan as well the Fort Collins Stormwater Criteria Manual.
2. If there is an increase in imperviousness greater than 1,000 square feet a drainage report, erosion control report and construction plans are required and they must be prepared by a Professional Engineer registered in Colorado. The drainage report must address the four-step process for selecting structural BMPs. If the increase in impervious area is greater than 350 square feet and less than 1,000 square feet, a drainage letter along with a grading and erosion control plan should be sufficient to document the existing and proposed drainage patterns. A drainage letter and grading plan are required if the increase in imperviousness is greater than 350 square feet and less than 1000 square feet. A grading plan is required if the increase in imperviousness is less than 350 square feet.
3. As part of the drainage memo for this site, the developer will need to address where the runoff generated by the new impervious area is going and may need to mitigate any additional runoff directed onto adjacent properties.
4. Water quality treatment is also required as described in the Fort Collins Stormwater Criteria Manual. Extended detention is the usual method selected for water quality treatment; however the use of any of the BMPs is encouraged. (http://www.fcgov.com/utilities/business/builders-and-developers/development-forms-guideli nes-regulations/stormwater-criteria) In this case disconnection of impervious areas and directing the down spouts into landscaped areas are two acceptable methods.
5. The 2016 city wide Stormwater development fee (PIF) is $\$ 8,217 /$ acre for new impervious area over 350 sq. ft. and there is a $\$ 1,045.00 /$ acre review fee. No fee is charged for existing impervious area. These fees are to be paid at the time each building permit is issued. Information on fees can be found at: http://www.fcgov.com/utilities/business/builders-and-developers/plant-investment-developme nt-fees or contact Jean Pakech at 221-6375 for questions on fees. There is also an erosion control escrow required before the Development Construction permit is issued. The amount of the escrow is determined by the design engineer, and is based on the site disturbance area, cost of the measures, or a minimum amount in accordance with the Fort Collins Stormwater Manual.

Department: Historical Preservation

Contact: Maren Bzdek, 970-221-6206, mbzdek@fcgov.com

1. The property does not contain buildings 50 years old or older, and the proposed plans are unlikely to affect adjacent historic properties, if any.

Department: Fire Authority

Contact: Jim Lynxwiler, 970-416-2869, ilynxwiler@poudre-fire.org

1. FIRE ACCESS

Fire access is required to within 150' of all exterior portions of the building perimeter. This requirement has been met from Cedarwood Dr. Code language provided below.
> IFC 503.1.1: Approved fire Lanes shall be provided for every facility, building or portion of a building hereafter constructed or moved into or within the jurisdiction. The fire apparatus access road shall comply with the requirements of this section and shall extend to within 150
feet of all portions of the facility and all portions of the exterior walls of the first story of the building as measured by an approved route around the exterior of the building or facility.
2. WATER SUPPLY

A hydrant is required within 400 ' of any residential building. This requirement has been met with the existing utility infrastructure available in the area. Code language provided below.
> IFC 508.1 and Appendix B: RESIDENTIAL REQUIREMENTS: Within the Urban Growth Area, hydrants to provide $1,000 \mathrm{gpm}$ at 20 psi residual pressure, spaced not further than 400 feet to the building.

Department: Environmental Planning

Contact: Kelly Kimple, 970-416-2401, kkimple@fcgov.com

1. In regards to lighting, if using LED fixtures, please keep in mind that cooler color temperatures are harsher at night and cause more disruption to circadian rhythms for both humans and wildlife. Please consider a warmer color temperature (3000K or less) if using LED light fixtures. Please also consider fixtures with dimming capabilities so that light levels can be adjusted as needed.
2. With respect to landscaping and design, the City of Fort Collins Land Use Code, in Article 3.2.1 (E)(3), requires that you use low-water-use plants and grasses in your landscaping or re-landscaping and reduce bluegrass lawns as much as possible. Native and wildlife-friendly landscaping is encouraged as well.
3. The applicant should make note of Article 3.2.1(C) that requires developments to submit a landscape and tree protection plan, and if receiving water service from the City, an irrigation plan, that: "...(4) protects significant trees, natural systems, and habitat, and (5) enhances the pedestrian environment". Note that a significant tree is defined as a tree having DBH (Diameter at Breast Height) of six inches or more. If any of the trees within this site have a DBH of greater than six inches, a review of the trees shall be conducted with Tim Buchanan, City Forester (970-221-6361 or tbuchanan@fcgov.com) to determine the status of the existing trees and any mitigation requirements that could result from the proposed development.

Department: Engineering Development Review
 Contact: Marc Virata, 970-221-6567, mvirata@fcgov.com

1. Larimer County Road Impact Fees and Street Oversizing Fees are due at the time of building permit. Please contact Matt Baker at 224-6108 if you have any questions.
2. The City's Transportation Development Review Fee (TDRF) is due at the time of submittal. For additional information on these fees, please see: http://www.fcgov.com/engineering/dev-review.php
3. Any damaged curb, gutter and sidewalk existing prior to construction, as well as streets, sidewalks, curbs and gutters, destroyed, damaged or removed due to construction of this project, shall be replaced or restored to City of Fort Collins standards at the Developer's expense prior to the acceptance of completed improvements and/or prior to the issuance of the first Certificate of Occupancy.
4. All public sidewalk, driveways and ramps existing or proposed adjacent or within the site need to meet ADA standards, if they currently do not, they will need to be reconstructed so that they do meet current ADA standards as a part of this project.
5. Any public improvements must be designed and built in accordance with the Larimer County Urban Area Street Standards (LCUASS). They are available online at:
http://www.larimer.org/engineering/GMARdStds/UrbanSt.htm
6. This project is responsible for dedicating any right-of-way and easements that are necessary or required by the City for this project. This property was previously replatted and no additional dedications are anticipated, unless required for servicing the site.
7. Utility plans may be required and a Development Agreement may be required and recorded at Larimer County once the project is finalized, with recordation costs paid by the applicant.
8. permit
9. All fences, barriers, posts or other encroachments within the public right-of-way are only permitted upon approval of an encroachment permit. Applications for encroachment permits shall be made to Engineering Department for review and approval prior to installation. Encroachment items shall not be shown on the site plan as they may not be approved, need to be modified or moved, or if the permit is revoked then the site/ landscape plan is in non-compliance.
10. In regards to construction of this site, the public right-of-way shall not be used for staging or storage of materials or equipment associated with the Development, nor shall it be used for parking by any contractors, subcontractors, or other personnel working for or hired by the Developer to construct the Development. The Developer will need to find a location(s) on private property to accommodate any necessary Staging and/or parking needs associated with the completion of the Development. Information on the location(s) of these areas will be required to be provided to the City as a part of the Development Construction Permit application.

Department: Electric Engineering
 Contact: Tyler Siegmund, 970-416-2772, tsiegmund@fcgov.com

1. Electric Capacity Fee, Building Site charges and any system modification charges necessary will apply to this development. Please reference our policies, development charge processes, and use our fee estimator at http://www.fcgov.com/utilities/business/builders-and-developers.
2. Light and Power has electric facilities along the west side of Cedarwood Dr. that can be utilized to provide power to the new home.
3. Light \& Power will need the AutoCAD files of the approved site plan, landscape plan, and utility plans.
4. Please contact Light \& Power Engineering if you have any questions at 221-6700. Please reference our policies, development charge processes, and use our fee estimator at http://www.fcgov.com/utilities/business/builders-and-developers.

Planning Services

Contact: Noah Beals, 970-416-2313, nbeals@fcgov.com

1. The property is currently 1 lot. To add an additional primary structure the property will need to be replatted into 2 lots.
2. In the Low Density Residential (R-L) zone district the minimum lot is is $6,000 \mathrm{sf}$.

The floor area of each lot cannot exceed $1 / 3$ of the Lot size.
3. The setbacks in the R-L zone district are:

Front setback: 20ft
Rear setback: 15ft
Side interior setback: 5 ft
4. The maximum building height is 28 ft .
5. Single family detached dwelling is subject to a Type 1 review. The submittal will need to include a plat and site/landscape plan.
6. The proposed development project is subject to a Type 1 review and public hearing, the decision maker for Type 1 hearings is an Administrative Hearing Officer. The applicant for this development request is not required to hold a neighborhood meeting for a Type 1 hearing, but if you would like to have one to notify your neighbors of the proposal, please let me know and I can help you in setting a date, time and location for a meeting. Neighborhood Meetings are a great way to get public feedback and avoid potential hiccups that may occur later in the review process.
7. Please see the Development Review Guide at www.fcgov.com/drg. This online guide features a color coded flowchart with comprehensive, easy to read information on each step in the process. This guide includes links to just about every resource you need during development review.
8. This development proposal will be subject to all applicable standards of the Fort Collins Land Use Code (LUC), including Article 3 General Development Standards. The entire LUC is available for your review on the web at http://www.colocode.com/ftcollins/landuse/begin.htm.
9. If this proposal is unable to satisfy any of the requirements set forth in the LUC, a Modification of Standard Request will need to be submitted with your formal development proposal. Please see Section 2.8.2 of the LUC for more information on criteria to apply for a Modification of Standard.
10. Please see the Submittal Requirements and Checklist at: http://www.fcgov.com/developmentreview/applications.php.
11. The request will be subject to the Development Review Fee Schedule that is available in the Community Development and Neighborhood Services office. The fees are due at the time of submittal of the required documents for the appropriate development review process by City staff and affected outside reviewing agencies. Also, the required Transportation Development Review Fee must be paid at time of submittal.
12. When you are ready to submit your formal plans, please make an appointment with Community Development and Neighborhood Services at (970)221-6750.

Vineyard/Goldelm ODP

CONCEPTUAL REVIEW:

APPLICATION

General Information

All proposed development projects begin with Conceptual Review. Anyone with a development idea can schedule a Conceptual Review meeting to get feedback on prospective development ideas. At this stage, the development idea does not need to be finalized or professionally presented. However, a sketch plan and this application must be submitted to City Staff prior to the Conceptual Review meeting. The more information you are able to provide, the better feedback you are likely to get from the meeting. Please be aware that any information submitted may be considered a public record, available for review by anyone who requests it, including the media.
Conceptual Reviews are scheduled on three Monday mornings per month on a "first come, first served" basis. One 45 meeting is allocated per applicant and only three conceptual reviews are done each Monday morning. Conceptual Review is a free service. Complete applications and sketch plans must be submitted to City Staff no later than 5 pm, two Tuesdays prior to the meeting date. Application materials must be e-mailed to currentplanning@fcgov.com. If you do not have access to e-mail, other accommodations can be made upon request.

At Conceptual Review, you will meet with Staff from a number of City departments, such as Community Development and Neighborhood Services (Zoning, Current Planning, and Development Review Engineering), Light and Power, Stormwater, Water/Waste Water, Advance Planning (Long Range Planning and Transportation Planning) and Poudre Fire Authority. Comments are offered by staff to assist you in preparing the detailed components of the project application. There is no approval or denial of development proposals associated with Conceptual Review. At the meeting you will be presented with a letter from staff, summarizing comments on your proposal.
BOLDED ITEMS ARE REQUIRED *The more info provided, the more detailed your comments from staff will be.*
Contact Name(s) and Role(s) (Please identify whether Consultant or Owner, etc) Logan Simpson, c/o Michael Chalona (consultant), Planner

Business Name (if applicable)
Your Mailing Address 123 N. College Ave, ste 206, FTC, CO 80524
Phone Number 449-4100 Email Address _mchalona@logansimpson.com
Site Address or Description (parcel \# if no address) Parcel \#s 9611100901, 9611100003 \& 9611100031

[^0]
Proposed Use Multi-family, retail / vehicle sales, Church Existing Use Vacant

Total Building Square Footage_270,000S.F. Number of Stories 2 Lot Dimensions Varies

Age of any Existing Structures vacant land

Info available on Larimer County's Website: http://www.co.larimer.co.us/assessor/query/search.cfm
If any structures are 50+ years old, good quality, color photos of all sides of the structure are required for conceptual.
Is your property in aFlood Plain? X Yes \square No If yes, then at what risk isit? The western portion Info available on FC Maps: http://gisweb.fcgov.com/redirect/default.aspx?layerTheme=Floodplains.
Increase in Impervious Area 620,500 S.F.
(Approximate amount of additional building, pavement, or etc. that will cover existing bare ground to be added to the site)

Suggested items for the Sketch Plan:

Property location and boundaries, surrounding land uses, proposed use(s), existing and proposed improvements (buildings, landscaping, parking/drive areas, water treatment/detention, drainage), existing natural features (water bodies, wetlands, large trees, wildlife, canals, irrigation ditches), utility line locations (if known), photographs (helpful but not required). Things to consider when making a proposal: How does the site drain now? Will it change? If so, what will change?

Transportation Impact Study

Vineyard-Goldelm

Fort Collins, Colorado

Vineyard-Goldelm
 Transportation Impact Study Fort Collins, Colorado

22 February 2016

Prepared for:

Mr. Hans H. Breuer
Executive Pastor Vineyard Church 1201 Riverside Fort Collins, CO 80525

Prepared by:

Eric L. Bracke, P.E., P.T.O.E.

5401 Taylor Lane

Fort Collins, CO 80528
Office: 970-988-7551

ELBEngineering@lpbroadband.net

TABLE OF CONTENTS

Page
1 Introduction 1
2. Agency Discussions 1
3. Existing Conditions 3
4. Project Description 8
5. Traffic Projections/Analysis 12
6. Improvements 23
7. Multimodal Analysis 24
8. Conclusions 26

List of Tables

Table Page

1. LOS Definitions 7
2. Existing Operation 7
3. Trip Generation 10
4. 2018 Background Capacity Analysis 15
5. 2020 Background Capacity Analysis 16
6. 2036 Background Capacity Analysis 16
7. Year 2018 Total Traffic Capacity Analysis 21
8. Year 2020 Total Traffic Capacity Analysis 22
9. Year 2036 Total Traffic Capacity Analysis 23

List of Figures

Figures Page

1. Vicinity Map 2
2. Existing Peak Hour Traffic 6
3. Site Plan 9
4. Trip Distribution 10
5. Site Distributed Traffic 11
6. Year 2018 Background Traffic 12
7. Year 2020 Background Traffic 13
8. Year 2036 Background Traffic 14
9. Year 2018 Total Traffic 18
10. Year 2020 Total Traffic 19
11. Year 2036 Total Traffic 20

APPENDIX

A. Base Assumptions/Scoping Form
B. Traffic Counts
C. HCM Capacity Analysis - Base Condition
D. Signal Warrant Analysis - Existing Year
E. Background Years - HCM Analysis
F. 2018 Signal Warrant Analysis - Total Traffic
G. HCM Capacity Analysis - Total Traffic

1.0 Introduction

This transportation impact study addresses the Vineyard-Goldelm ODP/PDP located on the west side of College Avenue (US287) between Crestridge Road and Fossil Creek Boulevard in Fort Collins, Colorado. The site has sat vacant for years and numerous proposals have been submitted for this site. The site should be considered an infill development since it is surrounded by older county developments. The project will be constructed in phases and includes 250 apartments (non-student), a 42,000 square foot church, and either 18,000 square feet of car sales or specialty retail. For analysis purposes, the project will be built in three phases.

Figure 1 on the following page is a vicinity map displaying the location of the project.

2.0 Agency Discussions

Initial discussions with City staff indicated that a Full Transportation Impact Study as described in Chapter 4 of the Larimer County Urban Area Streets Standards (LCUASS) would be appropriate for this particular development.

The project is considered infill and redevelopment and there are no recently approved projects in the area that need to be considered in the analysis. College Avenue recently has been repaved with minor improvements to the intersection of Skyway and College. College Avenue is a State Highway (US287) and has an Access Control Plan in place.

The study will address the existing condition, a 2 -year horizon, a 4 -year horizon and a 20 -year horizon for planning purposes. Traffic projections for College Avenue are from the Colorado Department of Transportation.

Appendix A contains the form (Attachment A), which outlines the agreed to scope of work for the study.

Figure 1 - Vicinity Map

3.0 Existing Conditions

3.1. Current Traffic

Peak hour turning movements for the College/Crestridge, College/Smokey, and the College/Skyway were obtained in January 2016. Counts at these three locations were taken in 2-hour blocks of time in 15-minute increments. The counts were taken in the AM between 7:00-9:00 and in the PM between 4:00-6:00. The data was collected in between the snowstorms of January when traffic was fairly normalized. The raw data regarding the turning movements is provided in Appendix B.

3.2 Current Street System

The project is located in south Fort Collins on the west side of College Avenue between Crestridge and Fossil Creek Boulevard. The project intends to align Crestridge with Smokey on the east for full movement access with a potential traffic signal. Additional access is proposed on the north end of the project with a limited (RI/RO) movement.

The land uses in the area are mixed with commercial and residential. All the developments in the south and to the east of the site were built under older County standards. To the north of the site is the Redtail Grove Natural Area owned by the City of Fort Collins.

College Avenue is the main northsouth thoroughfare in Fort Collins and is also US 287. The roadway is under the jurisdiction of the Colorado Department Transportation (CDOT). College

Avenue is classified as an NRA Highway and currently has an Access Control Plan (ACP) in place that governs future access. College Avenue is a four-lane highway with a center left turn lane, shoulders and auxiliary lanes at intersections where needed. The speed limit is posted 55 mph and the pavement is in good condition.

Crestridge is a collector roadway that will provide full-access to the proposed development. The roadway connects to Venus Street and provides access to the residential area to the south as well as the car dealership. The roadway appears to be used more for parking than access and is in poor condition.

Smokey Street is a substandard roadway that provides access to an industrial area to the east of College Avenue. The roadway is in poor condition; no sidewalk, curb or gutter, and in a state of disrepair.

The intersection of College Ave and Skyway is controlled under a 6-phase traffic signal. Skyway traffic movements are relatively minor and the roadway provides access to the neighborhoods on both the east and west side of College Avenue. The radii on Skyway are non-existent and traffic operations for the turning movements is hindered by the poor geometry.

3.3 Current Traffic Conditions

Capacity analyses were performed at the key intersections to determine if existing deficiencies exist on the roadway network. The analyses followed the procedures of the Highway Capacity Manual 2010. For the intersections of College/Crestridge and College/Smokey, it was observed that most folks making the left turn maneuver from the side street were using the TWLTL as a refuge. The intersections were model/analyzed as a two-stage left turn. Observation at the intersection also revealed that although there are no north or southbound left turn lanes at Crestridge or Smokey, the shoulders act as right turn lanes.

Level of Service (LOS) is a qualitative term describing operating conditions and expressed in terms of delay. Table 1 below provides the definitions of LOS for both signalized and unsignalized intersections. Table 2 displays the results of the analyses. All key intersections operate at acceptable levels of service. The worksheets from the analyses can be found in Appendix C.

Figure 2 - Existing Peak Hour Turning Movements (AM/PM)

Level of Service	Signalized Intersection Average Total Delay (seconds/vehicle)	UnsignalizedIntersection Average Total Delay (seconds/vehicle)
A	<10	<10
B	>10 and ≤ 20	>10 and ≤ 15
C	>20 and ≤ 35	>15 and ≤ 25
D	>35 and ≤ 55	>25 and ≤ 35
E	>55 and ≤ 80	>35 and ≤ 50
F	>80	>50

Table 1 Level of Service Definitions

		AM		PM	
Intersection	Movement	LOS	Delay (sec/vehicle)	LOS	Delay (sec/vehicle)
COLLEGE/SKYWAY	EBL/T/R (APPROACH)	D	51.8	D	52.2
Signal	APPROACH	D	51.8	D	52.2
	WBL/T	D	47.8	D	48.8
	WBR	D	49.0	D	52.2
	WB APPROACH	D	48.5	D	49.9
	NBL	A	3.6	A	5.9
	NBT	A	7.3	A	6.5
	NBR	A	3.9	A	4.0
	NB APPROACH	A	7.2	A	6.4
	SBL	A	5.2	A	4.9
	SBT	A	4.5	A	7.5
	SBR	A	3.4	A	3.5
	SB APPROACH	A	4.4	A	7.2
	OVERALL	A	8.8	A	8.7
COLLEGE/SMOKEY	WBL/T	D	28.7	E	38.4
STOP SIGN	SBL	A	0.4	B	12.1
	OVERALL	A	0.5	A	1.7
COLLEGE/CRESTRIDGE	EBL/R	C	21.3	F	50.3
STOP SIGN	NBL	A	9.9	C	15.4
	OVERALL	A	0.2	A	0.7

Table 2: Capacity Analysis - Existing Condition

All of the key intersections are currently operating within the city standards from an overall standpoint. The intersections of College/Crestridge and College/Smokey are
experiencing delay - primarily the left turns onto College Avenue. This is a normal condition for an urban area.

A Traffic Signal Warrant Analysis was conducted for the existing condition to determine if signalization was warranted at this time. The results indicate that the intersection of Crestridge/College/Smokey did not meet signal warrants under today's trafficand the MUTCD requirements. Only the Peak Hour Warrant (\#3) was analyzed. Results of this analysis is found in Appendix D.

4.0 Project Description

4.1 Project

The project consists of developing the vacant parcel of land on the west side of College Avenue between Crestridge Road and Fossil Creek Boulevard. The property is situated just south of the Redtail Grove Natural Area. The project proposes to construct the project in three phases:

- Phase I - 250 apartments (non-student)
- Phase II - 18 thousand square feet of either specialty retail or auto sales
- Phase III - 42 thousand square feet for the Vineyard church

The project is surrounded by both commercial and residential developments. Access to the site will be from a right-in/right-out access on the north end of the project and on the south, at Crestridge Road. Crestridge Road is anticipated to be signalized in the future and realigned with Smokey Street on the east side of College Avenue.

For analysis purposes, it will be assumed that the development will be completed in the following years:

- Phase I by 2018
- Phase II by 2020
- Phase III is undetermined but will be considered in the long term analysis.

The preliminary site plan is displayed in Figure 3.

Figure 3- Preliminary Site Plan

4.2 Trip Generation

Trip generation rates for the proposed project are based on the ITE Trip Generation, $9^{\text {th }}$ Edition. The manual presents data from numerous trip generation studies for a variety of land uses from across the country. ITE Code 220, Apartments, was used for the residential and ITE Code 826 for the retail portion, and ITE Code 560 for the church use. No trip reductions were assumed as part of the project.

Table 3 below summarizes the proposed trip generation for the project. For the entire project, during the morning peak hour, 294 trip ends can be expected and 298 trip ends can be expected from the project during the afternoon peak hours.

ITE Code	Land Use	Size	AWDTA		AM Peak Hour			PM Peak Hour		
			Rate	Trips	Rate	In	Out	Rate	In	Out
Phase I										
220	Apartments	250	6.65	1663	0.55	37	98	0.67	102	65
Phase II										
826	Specialty Retail Center	18	44.32	798	6.84	59	64	5.02	5 I	40
Phase II										
560	Church	42	9.II	383	0.87	20	16	0.94	2 I	19
!	.		!	\cdots		-		<	:	!
	Total			2843		II6	I78		I74	I24

Table 3-Trip Generation

4.3 Trip Distribution

Trip distribution is the process of determining where the trips are coming to and from the site. Since all trips into the site must come enter the site from College Avenue, the distribution is all north-south movements. The distribution for the project is displayed in Figure 4.

Figure 4 - Trip Distribution

4.4 Site Distributed Traffic

Based on the trip generation, the project trips were then assigned to the surrounding roadway network based on the estimated trip distribution. The numbers have been rounded to the nearest " 5 ". These estimated project trips will be utilized by adding them to the background traffic then analyzed to estimated roadway impact. Site distributed traffic is shown below in Figure 5.

Figure 5 - Site Distributed Traffic by Phase

5.0 Traffic Projections/Background Analysis

5.1 Traffic Projections

Background traffic for the horizon years was estimated by assuming that all traffic movements would increase by 1.0% per year, as agreed to in the initial scoping meeting with the Traffic Operations Department. The projections are based on the Colorado Department of Transportation estimates and the OTIS estimation for future traffic projections on the state highway system. Background traffic is displayed in Figure 6, 7 and 8.

Figure 6 - Year 2018 Background Peak Hour Turning Movements (AM/PM)

Figure 7 - Year 2020 Background Peak Hour Turning Movements (AM/PM)

Figure 8 - Year 2036 Background Peak Hour Turning Movements (AM/PM)

5.2 Capacity Analysis - Background

Capacity analysis was performed for all the key intersections based on the techniques of the 2010 Highway Capacity Manual. The analysis revealed that the intersection get slightly worse in terms of delay as we moved through the horizon years. In particular, the minor street left turns from Crestridge and Smokey experience high levels of delay under stop sign control. The intersection of College/Skyway continues to operate at good levels of service without improvements through the year 2036.

Tables 4-6 display the results of the analysis and capacity worksheets can be found in Appendix E.

		AM		PM	
Intersection	Movement	LOS	Delay (sec/vehicle)	LOS	Delay (sec/vehicle)
COLLEGE/SKYWAY	EBL/T/R (APPROACH)	D	51.7	D	52.1
Signal	APPROACH	D	51.7	D	52.1
	WBL/T	D	47.5	D	48.7
	WBR	D	48.4	D	50.4
	WB APPROACH	D	48.0	D	49.6
	NBL	A	3.8	A	6.5
	NBT	A	7.8	A	6.7
	NBR	A	4.1	A	4.1
	NB APPROACH	A	7.7	A	6.7
	SBL	A	5.7	A	5.3
	SBT	A	4.8	A	8.0
	SBR	A	3.6	A	3.7
	SB APPROACH	A	4.7	A	7.7
	OVERALL	A	9.2	A	9.2
COLLEGE/SMOKEY	WBL/T	D	25.2	E	38.1
STOP SIGN	SBL	A	14.8	B	11.7
	OVERALL	A	0.5	A	1.7
COLLEGE/CRESTRIDGE	EBL/R	C	14.9	F	51.5
STOP SIGN	NBL	A	10.0	C	15.4
	OVERALL	A	0.2	A	0.8

Table 4-Year 2018 Background Traffic

		AM		PM	
Intersection	Movement	LOS	Delay (sec/vehicle)	LOS	Delay (sec/vehicle)
COLLEGE/SKYWAY	EBL/T/R (APPROACH)	D	51.3	D	52.1
Signal	APPROACH	D	51.3	D	52.1
	WBL/T	D	46.9	D	848.7
	WBR	D	47.2	D	50.4
	WB APPROACH	D	47.0	D	49.6
	NBL	A	4.1	A	6.7
	NBT	A	8.4	A	6.8
	NBR	A	4.4	A	4.1
	NB APPROACH	A	8.3	A	6.8
	SBL	A	6.3	A	5.5
	SBT	A	5.1	A	8.2
	SBR	A	3.9	A	3.7
	SB APPROACH	A	5.1	A	7.9
	OVERALL	A	9.9	A	9.3
COLLEGE/SMOKEY	WBL/T	D	30.6	E	46.1
STOP SIGN	SBL	C	15.1	B	12.5
	OVERALL	A	0.6	A	2.0
COLLEGE/CRESTRIDGE	EBL/R	C	21.8	F	58.8
STOP SIGN	NBL	B	10.0	C	16.0
	OVERALL	A	0.3	A	0.8

Table 5 - Year 2020 Background Traffic

		AM		PM	
Intersection	Movement	LOS	Delay (sec/vehicle)	LOS	Delay (sec/vehicle)
COLLEGE/SKYWAY	EBL/T/R (APPROACH)	D	51.1	D	51.6
Signal	APPROACH	D	51.1	D	51.6
	WBL/T	D	46.1	D	47.1
	WBR	D	46.6	D	48.6
	WB APPROACH	D	46.4	D	47.9
	NBL	A	4.5	B	15.6
	NBT	B	10.6	A	8.4
	NBR	A	4.7	A	4.6
	NB APPROACH	A	10.4	A	8.5
	SBL	A	9.2	A	8.4
	SBT	A	5.8	B	13.5
	SBR	A	4.2	A	4.2
	SB APPROACH	A	5.8	B	13.0
	OVERALL	B	11.1	B	12.9
COLLEGE/SMOKEY	WBL/T	E	46.3	F	50.3
STOP SIGN	SBL	C	17.9	B	14.1
	OVERALL	A	0.9	A	2.0
COLLEGE/CRESTRIDGE	EBL/R	D	27.5	F	76.7
STOP SIGN	NBL	B	10.7	C	19.6
	OVERALL	A	0.4	A	1.2

Table 6 - Year 2036 Background Traffic

5.2 Total Traffic Projections and Analysis

Site generated traffic was then added to the background traffic to derive the total traffic expected on the network for the horizons years. Figures 9-11 display the total traffic that is used in the analysis.

While calculating the "Total Traffic Projections", a Warrant Study was conducted at the intersections of College Ave/Crestridge/Smokey. It was determined that with the first phase of the project completed, the intersection would meet traffic signal warrants under the Manual on Uniform Traffic Control Devices, 2009. For analysis purposes, it was assumed that Crestridge and Smokey would be realigned sometime in between the construction of phase I and phase II. However, this does not prohibit the developer to construct the realignment during the phase I construction (which would be preferred on several levels). The Year 2018 "Total Traffic" diagram as shown in Figure 9 assumed that 65 EB left turn morning peak hour trips and 45 EB left turn morning trips went south through the neighborhood to make the EBLT at Skyway and College. The delays in making this movement at Crestridge would be severe and they would most likely cut through the neighborhood to make the left turn safely.

From a daily trip perspective, ELB Engineering, LLC has estimated that the total project would generate over 2800 trips per day. Half of these trips ends are in and the other half are leaving the site. If the assumption is that 65% of these trips are heading north, there will probably be 900 extra trips going through the neighborhood to make the left turn at Skyway. From a traffic engineering perspective, going through the neighborhood is a safe and reasonable maneuver. From a neighborhood perspective, the increase in traffic will be unacceptable. If this project is to be successful, then the developer needs to find a way to reconstruct Crestridge Road and signalize the intersection in the early stages of the project.

The Warrant Study can be found in Appendix F and the Capacity Worksheets in Appendix G.

Figure 9 - Year 2018 Total Traffic - Phase I w/o realigned Crestridge

Figure 10 - Year 2020 Total Traffic - Phase II w/ realigned Crestridge

Figure 11 - Year 2036 Total Traffic - Phase III

Capacity analysis was performed on each of the key intersections for the years 2018, 2020 and for 2036. As stated earlier, it was assumed that in 2018, Crestridge and not yet been realigned. The intersection of College and Skyway functioned well with additional WB left turns added to the intersection.

In the years 2020 and 2036, it was assumed that the key intersection had been realigned. For analysis purposes the following geometry was assumed:

- The NB and SB approaches all had left turn lanes, two through lanes and an auxiliary right turn lane.
- Crestridge approach assumed a left turn lane and a combination thru-right
- The Smokey approach assumed the existing geometry with a combination left-thru-right.
- The intersection operated under a 6-phase traffic signal with protected/permitted left turn phasing for the north and southbound left turns.

The results of the analysis are shown in Tables 7-9 on the following pages. The key intersections operate under acceptable conditions in the short and long range future.

		AM		PM	
Intersection	Movement	LOS	Delay (sec/vehicle)	LOS	Delay (sec/vehicle)
COLLEGE/SKYWAY	EBL/T/R (APPROACH)	D	50.3	D	50.8
Signal	APPROACH	D	50.3	D	50.8
	WBL/T	D	42.6	D	44.3
	WBR	D	43.1	D	45.0
	WB APPROACH	D	42.9	D	44.7
	NBL	A	5.4	A	9.3
	NBT	B	10.5	A	9.0
	NBR	A	5.5	A	5.4
	NB APPROACH	B	10.4	A	8.9
	SBL	A	8.0	A	7.5
	SBT	A	6.8	B	11.0
	SBR	A	5.0	A	4.9
	SB APPROACH	A	6.7	B	10.6
	OVERALL	B	11.9	B	12.1
COLLEGE/SMOKEY	WBL/T	D	29.0	E	41.9
STOP SIGN	SBL	C	16.1	B	12.3
	OVERALL	A	0.6	A	1.9
COLLEGE/CRESTRIDGE	EBL/R	C	19.6	F	52.1
STOP SIGN	NBL	B	10.2	C	16.6
	OVERALL	A	0.5	A	1.1
COLLEGE/VENUS (access)	EBR	B	11.9	C	18.0

Table 7 - Year 2018 Total Traffic Analysis

		AM		PM	
Intersection	Movement	LOS	Delay (sec/vehicle)	LOS	Delay (sec/vehicle)
COLLEGE/SKYWAY	EBL/T/R (APPROACH)	D	51.5	D	52.1
Signal	APPROACH	D	51.5	D	52.1
	WBL/T	D	47.0	D	4.7
	WBR	D	48.1	D	50.4
	WB APPROACH	D	47.6	D	49.6
	NBL	A	4.0	A	7.2
	NBT	A	8.4	A	7.1
	NBR	A	4.2	A	4.1
	NB APPROACH	A	8.3	A	7.0
	SBL	A	6.4	A	6.0
	SBT	A	5.2	B	8.5
	SBR	A	3.8	A	3.7
	SB APPROACH	A	5.1	A	8.2
	OVERALL	A	9.7	A	9.5
COLLEGE/CRESTRIDGE/SMOKEY	EBL	D	39.1	D	43.5
Signal	EBT/T	D	36.2	D	38.7
	EB APPROACH	D	38.3	D	42.3
	WBL/T/R	D	35.4	D	43.2
	WB APPROACH	D	35.4	D	43.2
	NBL	A	5.0	B	12.4
	NBT	A	9.9	A	9.5
	NBR	A	5.1	A	6.1
	NB APPROACH	A	9.7	A	9.5
	SBL	A	8.6	A	8.8
	SBT	A	7.1	B	1.3
	SBR	A	5.5	A	5.7
	SB APPROACH	A	7.0	B	11.9
	OVERALL	B	11.0	B	13.4
COLLEGE/VENUS (access)	EBR	B	12.4	C	19.4

Table 8 - Year 2020 Total Traffic Analysis

		AM		PM	
Intersection	Movement	LOS	Delay ($\mathrm{sec} / \mathrm{vehicle)}$	LOS	Delay ($\mathrm{sec} / \mathrm{vehicle)}$
COLLEGE/SKYWAY	EBLT/R (APPROACH)	D	51.2	D	51.6
Signal	APPROACH	D	51.2	D	51.6
	WBLT	D	46.2	D	47.1
	WBR	D	46.7	D	48.6
	WB APPROACH	D	46.4	D	47.9
	NBL	A	4.6	B	17.3
	NBT	B	10.6	A	8.6
	NBR	A	4.7	A	4.6
	NB APPROACH	B	10.5	A	8.7
	SBL	A	9.4	A	9.0
	SBT	A	6.0	B	14.3
	SBR	A	4.2	A	4.2
	SB APPROACH	A	6.0	A	13.8
	OVERALL	B	11.1	B	13.4
COLLEGE/CRESTRIDGE/SMOKEY	EBL	D	43.5	D	44.7
Signal	EBT/T	D	39.4	D	39.2
	EB APPROACH	D	42.5	D	43.3
	WBLT/R	D	39.3	D	43.5
	WB APPROACH	D	39.3	D	43.5
	NBL	A	5.4	C	25.7
	NBT	B	12.3	B	10.4
	NBR	A	5.2	A	5.9
	NB APPROACH	B	12.0	B	11.0
	SBL	B	12.1	A	8.5
	SBT	A	7.6	B	19.3
	SBR	A	5.6	A	6.2
	SB APPROACH	A	7.5	B	18.8
	OVERALL	B	12.6	B	17.5
COLLEGE/VENUS (access)	EBR	B	13.4	C	23.9

Table 9 Year 2036 Total Traffic Analysis

6.0 Improvements

6.1. Auxiliary Lanes:

College Avenue is a State Highway under the "NRA" classification category with a speed limit of 55 mph . Based on the State Highway Access Code, the following improvements would be required:

- Connection of Venus at College Ave.:
- Southbound deceleration lane of 600'. This may be difficult to accomplish with the bridge in place over Fossil Creek
- A southbound acceleration lane from Venus at a length of 960^{\prime}
- Some form of median control to prevent the NB left turn and the and the EB left turn from the intersection
- College/Smokey/Crestridge Realignment
- NB and SB right turn lanes should be provided at the new intersection with at least 600^{\prime} of deceleration and 60 ' of storage.
- NB and SB right turn lanes are already present and should be brought up to the code in terms of deceleration.
- NB and SB acceleration lanes would be required at the intersection that would accommodate "free right turns"

7.0. Multi-Modal Evaluation

Section 4.5.3 (B) of the Larimer County Urban Area Street Standards requires that projects undergo a level of service analysis for alternative modes of transportation. The modes of transportation that must meet LOS standards are bicycles, and pedestrians. Transit service LOS must also be analyzed at the time of development review.

7.1 Pedestrian Level of Service

The project area was evaluated for compliance with the pedestrian level of service standards. The project will construct pedestrian facilities an amenities to ensure that onsite pedestrian is safe and pleasant. Sidewalks, crosswalks, appropriate lighting will all be in place as the project develops.

As stated previously, the site is surrounded by older county developments and there are no sidewalks in the immediate vicinity. It is physically impossible to connect to exist to surrounding neighborhoods via pedestrian facilities.

There are sidewalks in the Redtail Ponds development to the north of the site but there isn't an area considered a "pedestrian destination" in the development.

On the northeast corner of the site, a pedestrian/trail connection could be made to the Mason Street Trail that would give additional access to other locations.

The development will provide all pedestrian facilities and amenities in conformance with the City of Fort Collins standards.

7.2 Bicycles Level of Service

The project meets the standard of C for bicycle LOS. This LOS can be achieved if the project makes the connection to the Mason Street Trail to the north of the project. This trail provides access both to the north and to the east of the site.

At one time, there were bike lanes on College Avenue from Harmony Road to Carpenter Road. When CDOT repaved College Avenue in 2015, the bike lanes were removed and never replaced. The bike lanes were originally installed as an "experiment" by the City of Fort Collins under the permission of both CDOT and FHWA. The City was under the obligation to study the area and write a report on the results of the experiment. However, it is unknown if that report was ever written or why the bike lanes were removed. If the bike lanes had remained on College Avenue, then the LOS would be elevated to a B.

C. Transit Level of Service

The project is located to the south of the normal operations of the Transfort Bus Service. However, there are bus stops within walking distance to the north and to the south of the site that will allow people to access the bus system through the Flex routes.

If a connection is made to the Mason Trail, then residents, employees, and customers will have full access to the site via transit. The City of Fort Collins South Transit is located north of the site with easy access via the trail.

8.0 Conclusion

This TIS assessed the impacts associated with the Vineyard-Goldelm ODP/PDP located on the west side of College Avenue in South Fort Collins, CO. The project proposes to construct 250 apartments, 18 thousand square feet of retail/car sales and a 42 thousand square foot church. Based on the analyses, investigations, and findings documented in the various sections of this Transportation Impact Study, the following can be concluded.

- Current operation is acceptable at all of the key intersections. Minor street left turns at Crestridge and Smokey are problematic in the peak hours.
- Operation at the key intersections will be acceptable under full build-out of the project.
- The realignment of Crestridge and Smokey should occur with the first phase of the project when signal warrants are satisfied.
- For the entire project, during the morning peak hour, 294 trip ends can be expected and 298 trip ends can be expected from the project during the afternoon peak hours.
- A new traffic signal will be warranted at Crestridge/College and is in conformance with the Access Control Plan.
- The project will be required to provide auxiliary lanes in conformance with the State Highway Access Code as discussed in the report.
- Multi-modal level of service can be satisfied for bikes and transit. LOS for pedestrians cannot be satisfied since there are no sidewalks in the immediate area. The project will construct the sidewalk system in conformance with the City Standards.

Statement of Adequacy: The transportation facilities will be adequate and available to serve this development as contained in the Larimer County Urban Area Street Standards. All applicable LOS standards will be met since all transportation facilities are in place or will be in place upon issuance of a certificate of occupancy.

APPENDIX A

Attachment A Transportation Impact Study Base Assumptions

Date: 25 Jatumy 2016
Trafic Engineer: Local Entity Engineer:

APPENDIX B

All Traffic Data

（303）216－2439 www．alltrafficdata．net

Location： 1 COLLEGE AVE \＆SMOKEY ST AM
Date and Start Time：Tuesday，February 09， 2016
Peak Hour：07：30 AM－08：30 AM
Peak 15－Minutes：07：30 AM－07：45 AM

Note：Total study counts contained in parentheses．

Traffic Counts

Interval	CRESTRIDGE DR Eastbound				SMOKEY ST Westhound				COLLEGE AVE Northbound				COLLEGE AVE Southbound					Rolling Hour	Pedestrain Crossings			
Start Time	U．Tum	Left	Thru	Right	U－Turn		Thu		U－Tum	Left	Thru	Right	U．Tum	Left	Thu	Right	Total		West	East	South	
700：00 AM	0	6	0	0	0	0	0	1	0	0	329	3	0	3	129	4	475	2，327	0	0	0	0
7：55：00 AM	0	2	0	1	0	0	0	1	0	2	369	5	0	7	178	3	568	2，456	0	0	0	0
					，								$\underline{ }$		\％			號				變
74SHOMM	0	4	0	3.	］	0	\％	$\sqrt{3}$	\bigcirc	2	361	12	0	b．	623	13．	C3t	2,48	0	0	h	0.
WUuHIM	${ }^{\circ}$	6	\％	1，	\bigcirc	7	O	7	0	？	305	10.	0	Y	\％39	0.	crit．	$24 \% 2$	9．	U	3	0
ת，JTEOAM，	\bigcirc	B．	0	2	9	4	8	4	》	2	TH1	6.	O	3.	20	9	57%		1	9	9	0.
$8: 3000$ AM	0	4	0	0	0	2	0	4	0	2	382	8	0	4	225	2	633		0	0	0	0
8：45：00 AM	0	4	0	0	0	5	0	5	0	2	337	15	0	6	208	5	587		0	0	0	0
Count Total	0	34	0	7	0	21	0	27	0	13	2，886	67	0	47	1，581	46	4，729		0	0	0	0
Peak Hour	0	18	0	6	0	14	0	16	0	7	1，469	36	0	27	841	32	2，466		0	0	0	0

All Traffic Data

whavery
(303) 216-2439 www.alltrafficdata.net

Location: 1 COLLEGE AVE \& SMOKEY ST PM
Date and Start Time: Monday, February 08, 2016
Peak Hour: 04:30 PM - 05:30 PM
Peak 15-Minutes: 04:45 PM-05:00 PM

Note: Total study counts contained in parentheses.
Traffic Counts

Interval	CRESTRDGE DR Eastbound				SMOKEY ST Westbound				COLLEGE AVE Northbound					COLLEGE AVE Southbound				Total	Rolling Hour	Pedestrain Crossings			
Stan Time	U-Tum:	Left	Thru	Right	U-Tum	Left	Thup		U-Tum	Left		Thu	Right	U.Tum	Left	Thry	Right			West	East	South	
400:00 PM	0	4	0	2	0	11	0	15	0	0		271	16	0	16	367	0	702	2,937	0	0	0	0
4:15:00 PM	0	0	0	3	0	11	0	20	0	0		292	20	0	24	343	0	713	2,993	0	0	0	0
431 UTM	0	4	\%	2.	9	12	5	25	9	0.		2 2 2	21	0	11	3h3:	0	732	J142	0	0	9	0.
3		t	4		S	,	3	\%		,		碞	,						, ${ }^{3}$		3		
51LUUP14	1	3	1).	4	0	14	V	18	O	O		25	\bigcirc	0	10	405.	0	750	297	9	1	0	4
bISTIPM	0	8.	1	t	1	11	6	13	U	9		25	4	V	1	4\%:	1	781.		9	0	\bigcirc	¢
5:3000 PM	0	5	0	2	0	11	0	11	0	0		289	19	0	10	383	0	730		0	0	0	0
5:45:00 PM	0	4	0	2	0	8	0	21	0	0		295	18	0	19	360	0	727		0	0	0	0
Count Total	0	41	0	19	0	88	0	140	0	0		2,318	132	0	105	3,074	0	5,914		1	1	0	1
Peak Hour	0	28	0	10	0	47	0	73	0	0		1,171	59	0	36	1,648		- 3,042					

An Traffic Data
(303) 216-2439 www.alltrafficdata.net

Location: 2 COLLEGE AVE \& SKYWAY DR PM
Date and Start Time: Monday, February 08, 2016
Peak Hour: 04:45 PM - 05:45 PM
Peak 15-Minutes: 05:15 PM - 05:30 PM

Peak Hour - Pedestrians/Bicycles in Crosswalk

Note: Total study counts contained in parentheses.
Traffic Counts

Interval	SKYWAY OR Eastbound				SKMWAY DR Westbound				COLLEGE AVE Northbound				COLLEGE AVE Southbound					Rolling Hour	Pedestratn Crossings			
Start Time	UTum	Left	Thre	Right	U-Tum	Left	Thru	Right	U-Tum	Left	Thru	Right	U-Tum	Left	Thre	Right	Total		West	East	South	
40000 PM	0	12	3	3	0	7	0	5	0	4	248	4	0	15	343	10	654	2,767	0	0	0	0
4:15:00 PM	0	12	5	B	0	11	2	12	0	4	284	8	0	7	331	10	694	2,846	0	0	0	0
43000 PM	0	14	2	9	0	4	3	7	0	4	267	5	0	10	366	9	700	2.920	0	0	0	0
44TOOPM	0	12	2	1	T	t	2	90	1	5	489	11	\bigcirc	11	¢50	12	749	2.15	D	2	D.	1
SHELPM	1	d	2	T.	9	7	2	3	Y	b	252	\bigcirc	\bigcirc	ग\%.	414.	5	7Ks	2505	y	\bigcirc	O.	1
	!					,			\%				受				S		,		L	
WYMOPM	0	1\%	\%	4	0	1.	4	11	0	1 J	27	3	1	\dagger	377	11	74		0.	ワ	1	0
5:45:00 PM	0	7	0	5	0	3	0	11	0	3	293	3	0	6	345	13	689		0	0	0	0
Count Totai	0	84	20	37	0	42	17	73	1	42	2,211	44	1	75	2,945	80	5,672		0	2	0	2
Peak Hour	0	39	10	12	0	17	12	38	1	27	1,119	24	1	37	1,560	38	2,935		0	0	1	0

All Traffic Data

（303）216－2439 www．alltrafficdata．net

Location： 2 COLLEGE AVE \＆SKYWAY DR AM
Date and Start Time：Monday，February 08， 2016
Peak Hour：07：45 AM－08：45 AM
Peak 15－Minutes：07：45 AM－08：00 AM

Note：Total study counts cantained in paentheses．

Traffic Counts

intervai	SKYWAY DR Eastbound				SKYWAY DR Westbound				COLLEGE AVE Northbound				COLLEGE AVE Southbound					Roling Hour	Pedestrain Crossings			
Start Time	U－Tum	Left	Thre	Right	U－Tum	Left	Thru		U－Tum	Left	Thru	Right	U－Tum	Left	Thns	Right	Total		West	East	South	
70000 AM	0	12	0	4	0	6	0	1	0	3	288	0	1	6	118	6	445	2，207	0	0	0	0
7：15：00 AM	0	11	1	7	0	11	0	5	0	4	340	3	3	\dagger	143	8	537	2，328	0	0	1	0
73000 AMA	0	15	2	8	0	1	1	40	0	1	363	1	0	3	181	8	594	2，353	0	0	0	0
Wemathe	星		S	\％	4	\％			＋				\％			\％	W\％	，	，			T
8MOUCHM	J	9	2	b．	0	1	\％	12	T	0	452．	5	0	7	160	12	566	2318	0	0	0.	1
8．Wi，MM	0	3	2	3	0	W3	\square	8	ग	2	312	8	\square	2	18\％	16	582		0.	》．	訁，	0
OFTHOMMA	0	8	2	4.	0	\bigcirc	4	6	9	\}	339	12	0	7	109．	7	L95．		0	0	\bigcirc	0
8：45：00 AM	0	9	0	5	0	10	4	14	0	5	323	3	0	7	200	15	595		0	0	0	0
Count Total	0	92	10	43	0	55	9	68	0	21	2，673	33	4	39	1，388	90	4，525		0	0	1	1
Peak Hour	0	45	7	19	0	27	4	38	0	8	¢，359	26	0	22	746	53	2，354		0	0	1	0

Appendix C

Vmeuard Godelm transportation mpaza sudu Fort Colms Colarabo

ELBEnancorida LLC Fobnam 2016

	4			\checkmark			4	4	7	＊	\downarrow	\downarrow
Far，ix	8，	\％${ }^{\text {F }}$	\％	578，	3雨：	－	部		，	，	\％	館
Lane Configurations		\＄			\uparrow	$\overrightarrow{7}$	7	44	$\overline{7}$	3	4	7
Volume（vehh）	45	，	19	27	4	38	8	1359	26	32	746	53
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial $Q(0 b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow，veh／h／n	1900	1863	1900	1900	1863	1863	1863	1863	1863	1863	1863	1863
Adj Flow Rate，velih	48	8	20	29	4	41	\％ 9	1461	28	34	802	57
Adj No．of Lanes	0	1	0	0	1	1	1	2	1	1	2	1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h	110	22	28	163	19	130	524	2614	1169	313	2679	1199
Arrive On Green	0.08	0.08	0.08	0.08	0.08	0.08	0.01	0.74	0.74	0.03	0.76	0.76
Sat Flow，vehth	688	263	340	1236	227	1583	1774	3539	1583	1774	3539	1583
Grp Volume（v），veh／h	76	0	0	33	0	41	9	1461	28	34	802	57
Grp Sat Flow（ $)^{\text {，velhinn }}$	1291	0	0	1463	0	1583	1774	1770	1583	1774	1770	1583
Q Serve（g＿s），s	4.4	0.0	0.0	0.0	0.0	2.7	0.1	20.2	0.5	0.5	7.8	1.0
Cycle Q Clear（g c $)^{\text {s }}$ s	6.6	0.0	0.0	2.3	0.0	27	0.1	20.2	0.5	0.5	78	10
Prop In Lane	0.63		0.26	0.88		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），vehh	159	0	0	182	0	130	524	2614	1169	313	2679	1199
VIC Ratio（ X ）	0.48	0.00	0.00	0.18	0.00	0.32	0.02	0.56	0.02	0.11	0.30	0.05
Avail Cap（c＿a），vehh	311	0	0	330	0	295	593	2614	1169	350	2679	1199
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Fiter（I）	1.00	0.00	0.00	1.00	0.00	1.00	1.00	100	100	1.00	1.00	100
Uniform Delay（d），s／veh	49.6	0.0	0.0	47.4	0.0	47.6	3.6	6.4	3.8	5.1	4.2	3.4
Incr Delay（d2），siveh	2.2	0.0	0.0	0.5	0.0	1.4	0.0	0.9	0.0	0.2	0.3	0.1
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOf0（ 50% ），vehth	2.4	0.0	0.0	1.0	0.0	1.2	0.1	10.1	0.2	0.2	3.9	0.5
LnGrp Delay（d），s／veh	51.8	0.0	0.0	47.8	0.0	49.0	3.6	7.3	3.9	5.2	4.5	3.4
LnGr LoS	D			D		D	A	A	A	A	A	A
Approach Vol，veh／h		76			74			1498			893	
Approach Delay，s／veh		51.8			48.5			7.2			4.4	
Approach LOS		D			D			A			A	

Movement	WBL	WBR	NBT	NBR	SEL	SBT
Vol, vehth	14	16	1469	36	27	847
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	.	-	0	0	
Veh in Median Storage, \#	0	-	0	-	.	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	2	2	2	2
Munt Flow	15	17	1580	39	29	911

Approach	WB	NB	SB
HCM Control Delay, 5	28.7	0	0.4
HCMLOS	D		

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, veh/h	18	6	7	1470	841	32
Conficting Peds, \#hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	\%	0	\%.	-	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	.	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	2	,	2	2
Mumt Flow	19	6	8	1581	904	34

	7月	是	ma
HCM Control Delay, s	21.3	0	0
HCMLOS	C		

Capacity (veh/h)	748	-	247	-	-
HCM Lane V/C Ratio	0.01	-	0.104	-	-
HCM Control Delay (s)	9.9	-	21.3	-	-
HCM Lane LOS	A	-	C	-	-
HCM 95th \%tile Q(veh)	0		0.3	-	-

	\prime			\checkmark		4	4	9	p		\downarrow	\downarrow
Pex	Tim		-	d-4.		嵒	1					
Lane Configurations		\oplus			\uparrow	F'	3	44	F	7	44	F
Votume (vehh)	39	10	10	17	12	38	27	1119	24	137	1560	38
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	100	1.00	1.00	1.00	1.00	1.00	100	1.00
Adj Sat Flow, veh/h/n	1900	1863	1900	1900	1863	1863	1863	1863	1863	1863	1863	1863
Acj Fow Rate, veh/h	42	11	11	18	13	41	29	1203	26	147	1677	41
Adj No. of Lanes	0	1	0	0	1	1	1	2	1	1	2	1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	106	25	16	109	65	112	263	2600	1163	415	2664	1192
Arive On Green	0.07	0.07	0.07	0.07	0.07	0.07	0.03	0.73	0.73	0.04	0.75	0.75
Sat Fow, vehin	738	354	227	812	922	1583	1774	3539	1583	1774	3539	1583
Grp Volume(v), veh/h	64	0	0	31	0	41	29	1203	26	147	1677	41
Gp Sat Flow(s), veh/h/n	1319	0	0	1734	0	1583	1774	1770	1583	1774	1770	1583
Q Serve(g_s), s	3.7	0.0	0.0	0.0	0.0	2.7	0.4	15.0	0.5	2.2	24.5	0.7
Cycle Q Clear ${ }^{\text {a _c }}$, s	5.5	0.0	0.0	17	0.0	27	0.4	15.0	0.5	2.2	24.5	07
Prop in Lane	0.66		0.17	0.58		1.00	1.00		1.00	1.00		1.00
Lane Gp Caplc), wehh	147	0	0	174	0	112	263	2600	1163	415	2664	1192
VIC Ratio (X)	0.43	0.00	0.00	0.18	0.00	0.37	0.11	0.46	0.02	0.35	0.63	0.03
Aval Cap(c_a), veth	302	0	0	340	0	281	304	2600	1163	431	2664	1192
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upsteam Filter(i)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	50.2	0.0	0.0	48.3	0.0	48.8	5.7	5.9	3.9	4.4	6.4	3.4
Incr Delay (d2), slveh	2.0	0.0	0.0	0.5	0.0	2.0	0.2	0.6	0.0	0.5	11	0.1
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfo(50%), veh/h	20	0.0	0.0	0.9	0.0	1.2	0.2	74	0.2	11	12.	0.3
LnGm Delay (d), s/veh	52.2	0.0	0.0	48.8	0.0	50.8	5.9	6.5	4.0	4.9	7.5	3.5
LnGrp LOS	D			D		D	A	A	A	A	A	A
Approach Vol, veh/h		64			72			1258			1865	
Approach Delay, slveh		52.2			49.9			6.4			7.2	
Approach LOS		D			D			A			A	

Assigned Phs	1	2	4	5	6	8
Ptis Duration ($G+Y+R \mathrm{c})$, s	10.4	86.3	13.2	8.4	88.3	13.2
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	5.5	5.5	5.5	5.5	5.5	5.5
Max Green Setting (Gmax), S	5.9	68.1	19.5	5.5	68.5	19.5
Max Q Clear Time (g_c+11), s	4.2	17.0	7.5	2.4	26.5	4.7
Green Ext Time (p, C), s	0.1	40.8	0.4	0.0	34.8	0.5
hlersection Summery						
HCM 2010 CtI Delay	8.7					
HCM 2010 LOS	A					

Approach	WB	NB	SB
HCM Control Delay, 5	38.4	0	0.3
HCMLOS	E		

Capacity (veh/h)	-	232	548	-
HCM Lane VIC Ratio	-	0.556	0.071	-
HCM Control Delay (s)	-	38.4	12.1	-
HCM Lane LOS	-	E	B	-
HCM 95th \% ilie Q(veh)	-	3	0.2	-
Notes				

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Vol, vehh	28	10	10	1234	1618	2
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Lengh	0	\%	0	\%.	-	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	30	11	11			2

Noles
\sim : Volume exceeds capacity $\quad \$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined \quad : All major volume in platoon

Appendx D

Wheward- foldom Transportation mpact stud ABEnaneerna. LLC
Fort Colns, Colorak
Fonnan 2016

Warrant 3: Peak Hour

4: Crestridge/College
Intersection Information

	Major Street	Minor Street
Street Name	College	Crestridge
Direction	NB/SB	EB
Number of Lanes	2	1
Approch Speed	55	25

Warrant 3 Met?
Details

Peak Hour Vehicular Volume
Community Population Greater Than 10,000 and Major Street Approach Speed Below 40 mph

Warrant 3: Peak Hour
4: Crestridge/College

Hour	Major Street Total All Approaches (vph)	Minor Street Highest Volume Approach (vph)
7.00	2,299	23
$8: 00$	2,146	27
16:00	2,7B8	27
17.00	2,835	33

Appendix E

HCM Control Delay, s	25.2	0	0.5
HCMLOS	D		

Intersection						
Int Delay, s/veh 0.2						
Movement	FPL	EBR	NB1	NBT	SBT	SER
Voll vehh	20	10	10	1520	860	35
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Contol	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	\%.	0	\%	-	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade \%	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	22	11	11	1634	925	38
Mejorminor Minorz			Majort		Major?	
Conflicting Flow All	1764	462	925	0	-	0
Stage 1	925	-	-	-	-	-
Stage 2	839	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	.	-	-	-	-
Critical Hdwy Stg 2	5.84	-	\cdot	-	-	-
Follow-up Hawy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	75	547	734	-	-	-
Stage 1	347	-	-	-	.	-
Stage 2	384	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	74	547	734	-	-	-
Mov Cap-2 Maneuver	347	.	.	-	-	-
Stage 1	347	-	-	-	-	-
Stage 2	378	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, 5	14.9	0.1	0
HCMLOS	B		

	-		\square		4	4	4	4	p	\checkmark	\downarrow	\downarrow
Movement	EEL	CBT	EER	Mel	WBT	WPR	NEL	NET	NEP	S8L	SBI	SBE
Lane Configurations		\$			4	7	4	14	1	k	4	F
Volume (veh/h)	40	10	10	20	15	40	30	1140	25	140	1590	40
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial $Q(O b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	100	1.00	1.00	1.00	100	1.00	1.00	100	1.00	1.00	100	100
Adj Sat Flow, veh/h/ln	1900	1863	1900	1900	1863	1863	1863	1863	1863	1863	1863	1863
Adj Fow Rate, vehh	43	11	11	22	16	43	32	1226	27.	151	1710	43
Adj No. of Lanes	0	1	0	0	1	1	1	2	1	1	2	1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, vehih	106	26.	16	111	67	117	255	2587	1157.	405	2646	1184
Arrive On Green	0.07	0.07	0.07	0.07	0.07	0.07	0.03	0.73	0.73	0.05	0.75	0.75
Sat Flow, vehh	702	352	215	805	908	1583	1774	3539	1583	1774	3539	1583
Grp Volume(v), veh/h	65	0	0	38	0	43	32	1226	27	151	1710	43
Grp Sat Flow(s), veh/h/h	1269	0	0	1713	0	1583	1774	1770	1583	1774	1770	1583
Q Serve(g_s), s	3.7	0.0	0.0	0.0	0.0	2.8	0.5	15.7	0.5	2.3	26.0	0.8
Cycle Q Clear (g c), s	5.8	0.0	0.0	2.2	0.0	28	0.5	15.7 .	0.5	23.	26.0	0.8
Prop In Lane	0.66		0.17	0.58		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), vehth	148	0	0	179	0	117	255	2587.	1157	405	2646	1184
VIC Ratio(X)	0.44	0.00	0.00	0.21	0.00	0.37	0.13	0.47	0.02	0.37	0.65	0.04
Avail Cap(c a), vehih	278	0.	0	318	0	259	286	2587	1157	494	2646	1184
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter()	100	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	100
Uniform Delay (d), s/veh	50.1	0.0	0.0	48.1	0.0	48.5	6.2	6.1	4.1	4.7	6.8	3.6
Incr Delay (d2), siveh	2.0	0.0	0.0	0.6	0.0	1.9	0.2	0.6	0.0	0.6	12	0.1
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ite BackOfQ (50%), vel/h	2.0	0.0	0.0	1.1	0.0	13	03.	7.7	0.2	12	12.8	0.4
LnGrp Delay(d), s/veh	52.1	0.0	0.0	48.7	0.0	50.4	6.5	6.7	4.1	5.3	8.0	3.7
LnGplos	D			D.		D	A	A	A	A	A	A
Approach Vol, veh/h		65			81			1285			1904	
Approach Delay, slveh		52.1			49.6			6.7			77.	
Approach LOS		D			D			A			A	
mmier	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration ($G+Y+R \mathrm{C})$, s	10.5	85.9		13.7	8.6	87.7		13.7				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	5.5	5.5		5.5	5.5	5.5		5.5				
Max Green Setting (Gmax), s	10.5	65.0		18.0	5.0	70.5		18.0				
Max Q Clear Time (g_c+11), 5	4.3	17.7		7.8	2.5	28.0		4.8				
Green Ext Time ($\mathrm{P}_{\mathrm{L}}^{\mathrm{C}}$) , s	0.2	39.0		0.4	0.0	35.7		0.5				
htersecten Summary												
HCM 2010 CHi DelayHCM 2010 LOS			9.2	2.								

HCM Control Delay, s	38.1	0	0.3
HCMLOS	E		

Capacity (veh/h)	-	238	580	-
HCM Lane VIC Ratio	-	0.565	0.074	-
HCM Control Delay (s)	-	38.1	11.7	-
HCM Lane LOS	-	E	B	.
HCM 95th \%ile Q(veh)	-	3.1	0.2	-

hitersedion							
Int Delay, s/veh 0.8							
Vol, vehh	30	10	10	1195	1615	5	
Conflicting Peds, \#hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	0	-	-	0	
Veh in Median Storage, \#	0	-	-	0	0	-	
Grade, \%	0	-	-	0	0	-	
Peak Hour Factor	93	93	93	93	93	93	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mumt Flow	32	11	11	1285	1737	5	
Conticting Flow All	2401	868	1737	0	-	0	
Stage 1	1737	-	-	-	-	-	
Stage 2	664	-	-	-	-	-	
Critical Hdwy	6.84	6.94	4.14	-	-	-	
Critical Howy Stg 1	5.84	-	-	-	-	-	
Critical Hdwy Stg 2	5.84	-	-	-	-	-	
Follow-up Hdwy	3.52	3.32	2.22	-	-	-	
Pot Cap-1 Maneuver	-28	296	358	-	-	-	
Stage 1	127	.	.	-	-	-	
Stage 2	474	-	-	-	-	-	
Platoon blocked, \%				-	-	-	
Mov Cap-1 Maneuver	~27	296	358	-	-	-	
Mov Cap-2 Maneuver	99	.	.	-	-	-	
Stage 1	127	-	-	-	-	-	
Stage 2	459	-	-	-	-	-	

HCM Contol Delay, s	51.5	0.1	0		0
HCMLOS	F				

HCM Control Delay, s	30.6	0	0.5
HCMLOS	D		

Moverneat	TEL	Eb8	NBL	NBT	S31	S8R
Vol, vel/h	20	10	10	1550	875	35
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	0	-	-	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	\cdot	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehictes, \%	2	2	2	2	2	2
Mumt Flow	22	11	11	1667	941	38

HCM Control Delay, s	21.8	0.1	0
HCM LOS	c		

HCM Control Delay, s	46.1	0	0.3
HCM LOS	E		

$\sim:$ Volume exceeds capacity $\$$ Delay exceeds 300 , \quad Computation Not Defined \quad : All major volume in platoon

int Delay, s/veh 0.6

Movement	EBI:	EBR	NE1	NET	SET	Sber
Vol, vehh	30	10	10	1280	1680	5
Conficting Peds, \#hr	0	0	0	0	0	0
Sign Contol	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	,	\%.	0	.	-	\% 0
Veh in Median Storage, \#	0	-	-	0	0	
Grade, \%	0	-	-	0	0	
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	32	11	11	1376	1806	5

int Delay, s/veh 0.8						
Movement	EEI	EBP	NBL	NBT	SET	S8R
Vot, vehh	30	10	10	1280	1680	5
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Lengh	0	-	0	-	-	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	32	11	11	1376	1806	5
MararMinor	Minor2		Major1		Mejor2	
Conficting Flow All	2516	903	1806	0	.	0
Stage 1	1806	-	-	-	-	-
Stage 2	710	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	-23	280	337	-	-	-
Stage 1	116	.	.	-	-	-
Stage 2	448	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	~ 22	280	337	-	-	-
Mov Cap-2 Maneuver	90	-	-	-	-	-
Stage 1	116	-	-	-	-	-
Stage 2	433	-	-	-	-	-

HCM Control Delay, s	58.8	0.1	0
HCMLOS	F		

Capacity (veh/h)	337	108	-	-
HCM Lane V/C Ratio	0.032	- 0.398	-	-
HCM Control Delay (s)	16	58.8	-	-
HCM Lane LOS	C	F	-	-
HCM 95th \%tile Q(veh)	0.1	1.7	-	-
P-...				

	-						4	4	p		\dagger	\downarrow
Movement	E6I	CBT	Eter	Wh1	WET	NBR	NBL	NET	NBR	881	S81	SER
Lane Configurations		\$			4	F	7	14	Γ	${ }^{7}$	44	7
Volume (vehh)	55	10	25	35	5	45	10	1630	35	40	895.	65
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	100	1.00	100	100	100	100
Adj Sat Flow, veh/h/ln	1900	1863	1900	1900	1863	1863	1863	1863	1863	1863	1863	1863
Adj Flow Rate, vel/h	59	11	27.	38	5	48	11	1753	38	43	962	70
Adj No. of Lanes	0	1	0	0	1	1	1	2	1	1	2	1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, vehh	118	27	36	181	20	164	434	2525	1129	238	2596	1162
Arrive On Green	0.10	0.10	0.10	0.10	0.10	0.10	0.01	0.71	0.71	0.03	0.73	0.73
Sat Flow, veh/h	634	261	345	1156	195.	1583	1774	3539	1583	1774	3539	1583
Grp Volume(v), veh/h	97	0	0	43	0	48	11	1753	38	43	962	70
Grp Sat Flow(s), veh/h/h	1241	0	0	1351	0	1583	1774	1770	1583	1774	1770	1583
Q Serve(g_s), s	5.6	0.0	0.0	0.0	0.0	3.1	0.2	30.9	0.8	0.7	10.9	1.4
Cycle Q Clear (g c), s	8.8	0.0	0.0	3.2	0.0	3.1	0.2	30.9	0.8	0.7	10.9	14
Prop In Lane	0.61		0.28	0.88		1.00	1.00		1.00	1.00		1.00
Lane Gp Cap(c), veh/h	181	0	0	201	0	164	434	2525	1129	238	2596	1162
V/C Ratio(X)	0.54	0.00	0.00	0.21	0.00	0.29	0.03	0.69	0.03	0.18	0.37	0.06
Avall Cap($\mathrm{c}_{\text {a }} \mathrm{a}$), vehh	301	0	0	318	0	295.	499	2525	1129	268	2596	1162
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Fiter(I)	1.00	0.00	0.00	1.00	0.00	1.00	100	1.00	1.00	100	100	1.00
Uniform Delay (d), s/veh	48.6	0.0	0.0	45.6	0.0	45.6	4.5	9.0	4.6	8.8	5.4	4.1
Incr Delay (d2), siveh	25	0.0	0.0	0.5	0.0	1.0	0.0	16	0.1	0.4	0.4	0.1
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\% ite BackOfO (50%) vehin	3.0	0.0	0.0	1.2	0.0	1.4	0.1	15.4	0.4	0.5	5.5	0.6
LnGrp Delay(d), slveh	51.1	0.0	0.0	46.1	0.0	46.6	4.5	10.6	4.7	9.2	5.8	4.2
LnGrlos	D			D		D	A	B	A	A	A	A
Approach Vol, veh/h		97			91			1802			1075	
Approach Delay, stueh		51.1			46.4			10.4			5.8	
Approach LOS		D			D			B			A	
Jimer	1	2	3	4	5	6	7	8.				
Assigned Phs	1	2		4	5	6		8				
Phs Duration ($G+Y+R \mathrm{c}$), s	9.2	84.0		16.9	6.9	86.2		16.9				
Change Period ($\gamma+\mathrm{Rc}$), s	5.5	5.5		5.5	5.5	5.5		5.5				
Max Green Setting (Gmax), s	5.5	67.5		20.5	5.5	67.5		20.5				
Max Q Clear Time (g_ctin), s	2.7	32.9		10.8	2.2	12.9		5.2				
Green Ext Time (p C), s	0.0	28.6		0.6	0.0	41.2		0.8				
HCM 2010 Ctrl Delay HCM 2010 LOS												

HCM Control Delay, 5	46.3	0	0.5
HCM LOS	E		

Capacity (veh/h)	-		134	312	-
HCM Lane VIC Ratio	-		0.361	0.103	-
HCM Control Delay (s)	-	-	46.3	17.9	-
HCM Lane LOS	-	-	E	C	.
HCM 95th \%tile Q(veh)	-	-	1.5	0.3	

	4	\rightarrow	t	7	$\stackrel{ }{*}$	4	4	\uparrow	p		\downarrow	\downarrow
Movement	EEL	EBT	EER	WBL	WET	WBR	NEL	NBT	NBR	581	SBT	SBP
Lane Configurations		¢			4	F	\%	44	1	\%	4	7
Volume (velih)	50	15	15	20	15	45	35	1345	30	150	2000	45
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (ab), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	100	1.00	1.00	1.00	100
Adj Sat Flow, veh/h/h	1900	1863	1900	1900	1863	1863	1863	1863	1863	1863	1863	1863
Acj Fow Rate, vehh	54	16	16	22	16	48	38	1446	32	161	2151	48
Adj No. of Lanes	0	1	0	0	1	1	1	2	1	1	2	1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, vehh	116	32	23	121	75	140	176	2535	1134	331	2584	1156
Arive On Green	0.09	0.09	0.09	0.09	0.09	0.09	0.03	0.72	0.72	0.05	0.73	0.73
Sat Flow, veh/h	706	360	244	784	844	1583	1774	3539	1583	1774	3539	1583
Gp Volume(v), veh/h	86	0	0	38	0	48	38	1446	32	161	2151	48
Gip Sat Flow((3), whhh	1310	0	0	1628	0	1583	1774	1770	1583	1774	1770	1583
Q Serve (g_s), s	5.1	0.0	0.0	0.0	0.0	3.1	0.6	21.6	0.6	2.6	46.0	0.9
Cycle Q Clear (g c) , s	7.3	0.0	0.0	2.2	0.0	3.1	0.6	21.6	0.6	26	46.0	0.9
Prop in Lane	0.63		0.19	0.58		1.00	1.00		1.00	1.00		1.00
Lane Gp Cap(c), velh	169	0	0	196	0	140	176	2535	1134	331	2584	1156
V/C Ratio(X)	0.51	0.00	0.00	0.19	0.00	0.34	0.22	0.57	0.03	0.49	0.83	0.04
Avail Capp (a), veh/h	278	0	0	312	0	259	201	2535	1134	420	2584	1156
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	100	1.00	1.00
Uniform Delay (d), s/veh	49.3	0.0	0.0	46.7	0.0	47.1	15.0	7.5	4.5	7.3	10.2	4.1
Incr Delay (d2), sweh	23	0.0	0.0	0.5	0.0	1.4	0.6	0.9	0.0	1.1	3.3	0.1
Initial Q Delay (${ }^{\text {3 }}$), siveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%le BackOfor 50%), veh/h	27	0.0	0.0	1.1	0.0	1.4	0.6	10.8	0.3	18	23.3	0.4
LnGrp Delay (d), S/veh	51.6	0.0	0.0	47.1	0.0	48.6	15.6	8.4	4.6	8.4	13.5	4.2
LnGp Los	D			D		D	B	A	A	A	B	A
Approach Vol, veh/h		86			86			1516			2360	
Approach Delay, slveh		51.6			47.9			8.5			13.0	
Approach LOS		D			D			A			B	
Himer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2		4	5	6		8				
Phis Duration ($G+Y+\mathrm{Rc}$), s	10.5	84.3		15.2	8.9	85.8		15.2				
Change Period ($Y+R \mathrm{Rc}$, s	5.5	5.5		5.5	5.5	5.5		5.5				
Max Green Selting (Gmax) s	10.5	650		18.0	5.0	70.5		18.0				
Max Q Clear Time (g_c+11), s	4.6	23.6		9.3	2.6	48.0		5.1				
Green Ext Time (p_c), s	0.2	39.1		0.5	0.0	218		0.6				
Hersecion Summary												
HCM 2010 CHI DelayHCM 2010 LOS			12.9									
			B									

Int Delay, s/veh						
Movement	WBL	WER	NBT	NBR	SBL	SBT
Vol, veth	80	50	1405	70	40	1955
Conficting Peds, \#hr	0	0	0	0	0	0
Sign Contol	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	0	0	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	86	54	1511	75	43	2102
MarmMinor	Mhort		Mzart		1ajor 2	
Conflicting Fow All	2648	755	\% 0	0	1511	0
Stage 1	1511	-	-	-	-	-
Stage 2	1137	-	-	-	.	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Howy Stg 1	5.84	.	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	~19	351	-	-	439	-
Stage 1	169	-	-	-	-	-
Stage 2	268	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	~ 17	351	-	-	439	-
Mov Cap-2 Maneuver	169	-	-	-	-	-
Stage 1	169	-	-	-	-	-
Stage 2	242	-	-	-	-	-

HCM Control Delay, s	50.3	0	0.3
HCMLOS	F		

Capacity (veh/h)	-	-
HCM Lane VIC Ratio	-	-
HCM Control Delay (s)	-	-
HCM Lane LOS	-	-
HCM 95th \%tile Q(veh)	-	-

[^1]

Approach	E6	NB	SE
HCM Control Delay, s	76.7	0.2	0
HCMLOS	F		

Capacity (veh/h)	262	- 100	-	-
HCM Lane VIC Ratio	0.062	- 0.538	-	-
HCM Control Delay (s)	19.6	- 76.7	-	-
HCM Lane LoS	c	${ }_{\sim}{ }^{\text {F }}$	-	-
HCM 95th \%tile Q(veh)	0.2	- 2.5	-	-
voles				

Appendix F

Warrant 3: Peak Hour

4: Crestridge/College

Intersection Information

	Major Street	Minor Street
Street Name	College	Crestridge
Direction	NB/SB	EB
Number of Lanes	2	1
Approch Speed	55	25

Warrant 3 Met? Y Yes

Details

Low Population:		
Condition A Met ${ }^{\text {c }}$	Condition B Met	WYes.
Notes $\quad 0$ Hours met (1 required)	Notes	2 Hours met (1 required)
Minor Approach Time Delay Condition Met?		
Minor Approach Volume Condition Met?		
Total Entering Intersection Volume Condition Met?		

Peak Hour Vehicutar Volume
Community Population Greater Than 10,000 and Major Street Approach Speed Below 40 mph

Warrant 3: Peak Hour

4: Crestridge/College

Hour	Major Street Total All Approaches (vph)	Minor Street Highest Volume Approach (vph)
$7: 00$	2,270	37
	W. 2,425.	150
$8: 15$	1,757	19
16:00	2,788	62
$16: 15$	$2,882$	$\nwarrow \Vdash 146$. .
17.15	2,146	26

Appendix G

	4						4	4	p		\downarrow	\downarrow
Lane Configurations		\uparrow			\uparrow	F	${ }^{*}$	44	F	7	4	1
Volume (vehin)	110	10	2	30	5	40	10	1400	30	35	830	55
Number	7	4	14	3	8	18	5	2	12	1	6	16
Inital $Q(O b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	100	1.00	100	100	1.00	1.00	100
Adj Sat Flow, vehh/in	1900	1863	1900	1900	1863	1863	1863	1863	1863	1863	1863	1863
Adj Flow Rate, vehh	118	11	2	32	5	43	11	1505	32	38	892	59
Adj No. of Lanes	0	1	0	0	1	1	1	2	1	1	2	1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, vehh	202	15	2	245	34	208	445	2433	1088	274	2498	1117
Arive On Green	0.13	0.13	0.13	0.13	0.13	0.13	0.01	0.69	0.69	0.03	0.71	0.71
Sat Flow, vehth	1068	113	18	1404	260	1583	1774	3539	1583	1774	3539	1583
Grp Volume(v), veh/h	131	0	0	37	0	43	11	1505	32	38	892	59
Gp Sat Flow(s), veh/h/n	1199	0	0	1664	0	1583	1774	1770	1583	1774	1770	1583
Q Serve(g_s), s	10.0	0.0	0.0	0.0	0.0	2.7	0.2	25.4	0.7	0.7	10.9	1.3
Cycte Q Cloar (9_c) s	12.1	0.0	0.0	21	0.0	27	0.2	25.4	0.7	0.7	10.9	13
Prop in Lane	0.90		0.02	0.86		1.00	1.00		1.00	1.00		1.00
Lane Gp Cap(c), veh/h	220	0	0	279	0	208	445	2433	1088	274	2498	1117
V/C Ratio (X)	0.60	0.00	0.00	0.13	0.00	0.21	0.02	0.62	0.03	0.14	0.36	0.05
Avail Cap(c_a), veh/h	264	0	0	326	0	259	502	2433	1088	388	2498	1117
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Fuler(i)	1.00	0.00	0.00	1.00	0.00	100	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), stveh	47.7	0.0	0.0	42.4	0.0	42.7	5.3	9.3	5.5	7.8	6.4	4.9
Incr Delay (d2), slveh	26	0.0	0.0	0.2	0.0	0.5	0.0	1.2	0.1	0.2	0.4	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%oile BackOfa(50\%) , veh/h	4.1	0.0	0.0	1.0	0.0	12	0.1	12.7	0.3	0.3	5.3	0.6
LnGrp Delay (d), slveh	50.3	0.0	0.0	42.6	0.0	43.1	5.4	10.5	5.5	8.0	6.8	5.0
Lngp LOS	D			D		D	A	B	A	A	A	A
Approach Vol, veh/h		131			80			1548			989	
Approach Delay, slveh		50.3			42.9			10.4			6.7	
Approach LOS		D			D			B			A	

Assigned	1			5	6	8
Phs Duration ($G+Y+R \mathrm{c}$) s	8.9	81.1	19.9	6.9	83.1	19.9
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	5.5	5.5	5.5	5.5	5.5	5.5
Max Green Setting (Gmax), s	10.5	65.0	18.0	5.0	70.5	18.0
Max Q Clear Time ($\mathrm{g}_{2} \mathrm{c}+11$), s	2.7	27.4	14.1	2.2	12.9	4.7
Green Ext Time (P, C) s	0.0	27.2	0.3	0.0	36.2	0.8
hrersedion Suminay						
HCM 2010 Cti Delay	11.9					
HCM 2010 LOS	B					

Int Delay, s/veh
0.6

Movement	NBL	WBE	NBT	NPR	SEL	SBT
Vol, veh/h	15	20	1620	40	30	860
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	0	0	
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	16	22	1742	43	32	925

gprroach	WB	NB	S8
HCM Control Delay, s	29	0	0.5
HCMLOS	D		

Int Delay, S/veh						
Movement	EBL	EBR	NBL	NBT	SBT	SER
Vol, veth	20	30	40	1600	860	40
Conficting Peds, \#hr	0	0	0	0	0	0
Stign Contol	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Lengith	0	\%.	0).	.	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	22	32	43	1720	925	43
MajorMmor			Majar		M3jor2	
Conficting Flow All	1871	462	925	0	§.	0
Stage 1	925	-	-	-	-	-
Stage 2	946	\%	.	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Cribical Hawy Stg 1	5.84	.	.	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Folow-up Hdwy	3.52	3.32	222	-	-	-
Pot Cap-1 Maneuver	64	547	734	-	-	-
Stage 1	347	.	.	-	-	-
Stage 2	338	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	60	547	734	-	-	-
Mov Cap-2 Maneuver	179	.	.	-	-	-
Stage 1	347	-	-	-	-	-
Stage 2	318	-	-	-	-	-
HCM Control Delay, sHCM LOS			\%			
			0.2		0	

Capacity (veh/h)	734	300	-	
HCM Lane VIC Ratio	0.059	0.179	-	-
HCM Control Delay (s)	10.2	19.6	-	-
HCM Lane LOS	B	${ }^{1} \mathrm{C}$	-	-
HCM 95th \%file Q(veh)	0.2	0.6	-	

Int Delay, siveh
0.1

Movement	EBI	ERE	1E5	NET	585	SER
Vol, vel/h	0	20	0	1670	865	20
Conflicting Peds, \#hr	0	0	0	0	0	0
Stign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Lengith	\cdot	0	-	\%	-	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	\cdots	-	0	0	\checkmark
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	0	22	0	1796	930	22

Approach	EB	NB	8B
HCM Control Delay, s	11.9	0	0
HCMLOS	B		

Capacity (veh/h)	731	-	544	-	-
HCM Lane V/C Ratio	.	-	0.04	-	-
HCM Control Delay (s)	0	-	11.9	-	-
HCM Lane LOS	A	-	B	-	-
HCM 95th \%tile Q(veh)	0		0.1	-	

	4			\checkmark			4	\uparrow	1		\downarrow	\downarrow
Movement	EBL	EBI	EBR	WBL	WBT	WBR	NBL	NBT	NER	S81	SBT	SEP
Lane Configurations		\dagger			\uparrow	1	1	44	7	\dagger	4	F
Votume (vehh)	85	10	10	20	15	40	30	1175	25	140	1630	40
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial $Q(O)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	100	1.00	1.00	100	1.00	1.00	1.00	100	1.00	1.00	1.00
Adj Sat Flow, vehhihn	1900	1863	1900	1900	1863	1863	1863	1863	1863	1863	1863	1863
Adj Fow Rate, velh	91	11	11	22	16	43	32	1263	27	151	1753	43
Adj No. of Lanes	0	1	0	0	1	1	1	2	1	1	2	1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, vehh	166	20	14	147	94	181	226	2444	1093	366	2503	1120
Arive On Green	0.11	0.11	0.11	0.11	0.11	0.11	0.03	0.69	0.69	0.05	0.71	0.71
Sat Flow, vehm	938	173	120	836	822	1583	1774	3539	1583	1774	3539	1583
Gpp Volume(v), veh/h	113	0	0	38	0	43	32	1263	27	151	1753	43
Gp Sat Flow(s), veh/h/h	1230	0	0	1658	0	1583	1774	1770	1583	1774	1770	1583
Q Serve(g._s), s	8.1	0.0	0.0	0.0	0.0	2.7	0.6	18.9	0.6	2.7	31.6	0.9
Cycle Q Clearg $\mathrm{c}_{\text {c) }}$ s	10.2	0.0	0.0	2.1	0.0	27	0.6	18.9	0.6	27	31.6	0.9
Prop in Lane	0.81		0.10	0.58		1.00	1.00		1.00	1.00		1.00
Lane Grp Capic), velh	200	0	0	242	0	181	226	2444	1093	366	2503	1120
VIC Ratio (X)	0.57	0.00	0.00	0.16	0.00	0.24	0.14	0.52	0.02	0.41	0.70	0.04
Avall Cap (c_a) vehh	269	0	0	318	0	259	256	2444	1093	456	2503	1120
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filer(l)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	100	1.00	1.00
Uniform Delay (d), s/veh	48.3	0.0	0.0	44.0	0.0	44.3	9.0	8.2	5.4	6.7	9.3	4.8
Incr Delay (d2), slveh	25	0.0	0.0	0.3	0.0	0.7	0.3	0.8	0.0	0.7	1.7	0.1
Initial Q Delay (d3), 5 /veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50%) , veh/h	3.5	0.0	0.0	1.1	0.0	1.2	0.3	9.4	0.3	1.3	15.9	0.4
LnGrp Delay (d), s/veh	50.8	0.0	0.0	44.3	0.0	45.0	9.3	9.0	5.4	7.5	11.0	4.9
Lngplos.	D			D		D.	A	A	A	A	B	A
Approach Vol, veh/h		113			81			1322			1947	
Approach Delay, stueh		50.8			44.7			8.9			10.6	
Approach LOS		D			D			A			B	
R												
Assigned Phs	1	2		4	5	6		8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	10.5	815		181	8.6	83.3		18.1				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	5.5	5.5		5.5	5.5	5.5		5.5				
Max Green Setting (Gmax), 3	10.5	65.0		18.0	5.0	70.5		18.0				
Max Q Clear Time (g_ct1), s	4.7	20.9		12.2	2.6	33.6		4.7				
Green Ext Time (p_c), s	0.2	37.6		0.4	0.0	32.2		0.7				
ntersection summey												
HCM 2010 Ctri Delay $\int_{\text {a }}$.												
HCM 2010 LOS			B									

latersection

Int Delay, s/veh 1.9

Movement	WEL	WER	NBT	NBR	SBL	StI
Vol, vehh	50	75	1190	60	40	1595
Conficicing Peds, \#hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	None
Storage Length	0	\%.	-	0	0	
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	54	81	1280	65	43	

Approact	WB	NB	SB
HCM Control Delay, 5	41.9	0	0.3
HCMLOS	E		

[^2]$\frac{\text { litersection }}{\text { int Delay, s/veh } 1.1}$

Mavement	EBL	EER	NBL	NBT	SBT	SBR
Vol, vehh	30	20	45	1220	1615	35
Conficting Peds, \#hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None		None
Storage Length	0	\%.	0	\%		0
Veh in Median Storage, \#	0	-	-	0	0	
Grade, \%	0		-	0	0	
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	2	,	2	2
Mumt Flow	32	22	48	1312	1737	38

HCM Control Delay, s	52.1	0.6	0
HCM LOS	F		

$\underset{\sim}{\sim}$
hlersedion

Int Delay, s/veh 0.1

Wovernent	Ebl	EgR	NEI	NBT	84]	589
Vol, velh	0	10	0	1250	1645	35
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	\%.	-	N0
Veh in Median Storage, \#	0	-	-	0	0	
Grade, \%	0	-	\checkmark	0	0	
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	11	0	1344	1769	38

MajorMmer	Minor?		Major1		Major?	
Conflicting Flow All	2441	884	1769	0	§.,	0
Stage 1	1769	-	-	-	-	-
Stage 2	672	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Howy Stg 1	5.84	\%	\%	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	\bullet	-	-
Pot Cap-1 Maneuver	26	288	348	*	-	-
Stage 1	122	.	-	-	-	-
Stage 2	469	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	26	288	348	-	-	-
Mov Cap-2 Maneuver	96	-	-	-	-	-
Stage 1	122	-	-	-	-	-
Stage 2	469	-	-	-	-	\bullet

Arpiosch	EE	N6	SB
HCM Control Delay, s	18	0	0
HCMLOS	C		

	7			7			4	4	p		\downarrow	\downarrow
Movement	EEL	EET	EBR	WEL	WBT	WER	NBE	NBT	NBR	SEL	SBT	SEP
Lane Configurations		¢			\uparrow	7	7	44	7	\%	44	7
Volume (vehh)	50	10	20	30	5	45	10	1450	30	35	840	55
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initai $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	100	1.00	100	100	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/n	1900	1863	1900	1900	1863	1863	1863	1863	1863	1863	1863	1863
Adj Fow Rate, vehh	54	11	22	32	5	48	11	1559	32	38	903	59
Adj No. of Lanes	0	1	0	0	1	1	1	2	1	1	2	1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	114	26	30	169	22	146	471	2572	1151	284	2637	1180
Arive On Green	0.09	0.09	0.09	0.09	0.09	0.09	0.01	0.73	0.73	0.03	0.75	0.75
Sat flow, vehih	668	283	322	1173	241	1583	1774	3539	1583	1774	3539	1583
Grp Volume(v), veh $/ \mathrm{h}$	87	0	,	37	0	48	11	1559	32	38	903	59
Gip Sat Flow(s), veh/Mh	1272	0	0	1414	0	1583	1774	1770	1583	1774	1770	1583
Q Serve(g_s), s	5.1	0.0	0.0	0.0	0.0	3.1	0.2	23.7	0.6	0.6	9.6	1.1
Cycle Q Clearl9 c) , s	77	0.0	0.0	26	0.0	31	0.2	23.7	0.6	0.6	9.6	11
Prop in Lane	0.62		0.25	0.86		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(C), vehh	170	0	0	191	0	146	471	2572	1151	284	2637	1180
VIC Ratio(X)	0.51	0.00	0.00	0.19	0.00	0.33	0.02	0.61	0.03	0.13	0.34	0.05
Aval Cap(c_a), veh/h	281	0	0	299	0	266	537	2572	1151	318	2637	1180
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	100	1.00	1.00
Uniform Delay (d), s/veh	49.2	0.0	0.0	46.5	0.0	46.8	4.0	7.3	4.2	6.2	4.8	3.7
Incr Delay (d2), slveh	24	0.0	0.0	0.5	0.0	13	0.0	1.1	0.0	0.2	0.4	0.1
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%hle BackOfo(50%), vehhn	27	0.0	0.0	11	0.0	1.4	0.1	11.9	0.3	0.3	4.8	0.5
LnGrp Delay (d), s/veh	51.5	0.0	0.0	47.0	0.0	48.1	4.0	8.4	4.2	6.4	5.2	3.8
Lngm LOS	D			D		D	A	A	A	A	A	A
Approach Vol, veh/h		87			85			1602			1000	
Approach Delay, s/veh		51.5			47.6			8.3			5.1	
Approach LOS		D			D			A			A	

	3	\rightarrow		\checkmark		4	4	9	p		\dagger	\downarrow
Movement	FB1	FBT	EBR	WEL	WBT	UBR	NEL	NBT	NBR	88L	SBT	SBP
Lane Configurations	\%	F			*		7	44	T	${ }^{7}$	44	F
Volume (vehh)	125	5	45	15.	5	20	45	1530	40	30	840	65
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial $Q(Q$) , veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	100	1.00	100	100	1.00	1.00	1.00	1.00	1.00	100	100	100
Adj Sat Flow, veh/h/n	1863	1863	1900	1900	1863	1900	1863	1863	1863	1863	1863	1863
Adj Flow Rate, velhh	134	5	48	16	5	22	48	1645	43	32	903	70
Adj No. of Lanes	1	1	0	0	1	0	1	2	1	1	2	1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	253	18	171	103	44	94	461	2349	1051	245	2319	1038
Arrive On Green	0.12	0.12	0.12	0.12	0.12	0.12	0.04	0.66	0.66	0.03	0.66	0.66
Sai flow, veh/h	1378	152	1455.	395	371	803	1774	3539	1583	1774	3539	1583
Grp Volume(v), veh/h	134	0	53	43	0	0	48	1645	43	32	903	70
Grp Sat Flow(s), veh/h/h	1378	0	1606	1569	0	0	1774	1770	1583	1774	1770	1583
Q Serve(g_s), s	5.7	0.0	2.6	0.0	0.0	0.0	0.7	25.7	0.8	0.5	10.4	1.4
Cycte Q Clear (g c) s	7.7	0.0	26	20	0.0	0.0	0.7	25.7	0.8	0.5	10.4	1.4
Prop In Lane	1.00		0.91	0.37		0.51	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	253	0	189	241	0	0	461.	2349	1051	245	2319	1038
V/C Ratio(X)	0.53	0.00	0.28	0.18	0.00	0.00	0.10	0.70	0.04	0.13	0.39	0.07
Avall Cap(c_a), veh/h	412	0	375	416	0	0	494	2735	1224	293	2735	1224
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filer()	1.00	0.00	100	1.00	0.00	0.00	100	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	37.4	0.0	35.4	35.1	0.0	0.0	4.9	9.3	5.1	8.4	7.0	5.5
hincr Delay (d2), slveh	17	0.0	0.8	0.4	0.0	0.0	0.1	0.7	0.0	0.2	0.1	0.0
Initial Q Delay (d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOf(50%) veh/h	3.3	0.0	1.2	1.0	0.0	0.0	0.4	12.6	0.4	0.3	5.1	0.6
LnGp Delay(d), s/veh	39.1	0.0	36.2	35.4	0.0	0.0	5.0	9.9	5.1	8.6	7.1	5.5
LnGplos	D		D	D			A	A	A	A.	A	A
Approach Vol, veh/h		187			43			1736			1005	
Approach Delay, slveh		38.3			35.4			9.7			7.0	
Approach LOS		D			D			A			A	
Triser	1	2	3	4	5	6.	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration ($G+Y+R \mathrm{c}$), s	8.2	63.8		15.8	9.0	63.11		15.8				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	5.5	5.5		5.5	5.5	5.5		5.5				
Max Green Setting (Gmax), s	5.1	67.9		20.5	5.1	67.9		20.5				
Max Q Clear Time (g_c+11), s	2.5	27.7		9.7	2.7	12.4		4.0				
Green Ext Time (p_c), s /	0.0	30.7		0.7	0.0	38.8		0.8				
Gtersectan Summery												
HCM 2010 Cti Delay			11.0									
HCM 2010 LOS			B									

Capacity (veh/h)	685	- 514	-	-
HCM Lane VIC Rabo	-	- 0.052	-	-
HCM Control Delay (s)	0	- 12.4	-	-
HCM Lane LOS	A	. ${ }^{\text {B }}$	-	-
HCM 95th \%tile Q(veh)	0	0.2		

[^3]| | \rangle | | | | | | 4 | 4 | P | | \downarrow | \downarrow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | TE | 管 | | 艮 | | | \% | | | |
| Lane Configurations | \% | \dagger | | | 4 | | ${ }^{3}$ | 44 | 7 | \% | $4 \uparrow$ | 7 |
| Volume (vehh) | 100 | 5 | 30 | 50 | 5 | 75 | 65 | 1220 | 60 | 140 | 1635 | 40 |
| Number | 7 | 4 | 14 | 3 | 8 | 18 | 5 | 2 | 12 | 1 | 6 | 16 |
| Initial $Q(O b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 |
| Parking Bus, Adj | 1.00 | 100 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 100 | 1.00 |
| Adj Sat Flow, vehh/in | 1863 | 1863 | 1900 | 1900 | 1863 | 1900 | 1863 | 1863 | 1863 | 1863 | 1863 | 1863 |
| Adj Flow Rate, velh | 108 | 5 | 32 | 54 | 5 | 81 | 70 | 1312 | 65 | 151 | 1758 | 43 |
| Adj No. of Lanes | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 2 | 1 | 1 | 2 | 1 |
| Peak Hour Factor | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, vehh | 215 | 27 | 175 | 111 | 21 | 111 | 236 | 2320 | 1038 | 340 | 2344 | 1049 |
| Arive On Green | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.04 | 0.66 | 0.66 | 0.05 | 0.66 | 0.66 |
| Sat Flow, vehth | 1306 | 218 | 1398 | 479 | 167 | 886 | 1774 | 3539 | 1583 | 1774 | 3539 | 1583 |
| Gpp Volume(v), veh/h | 108 | 0 | 37 | 140 | 0 | 0 | 70 | 1312 | 65 | 151 | 1758 | 43 |
| Gp Sat Flow($($, veh/hh | 1306 | 0 | 1616 | 1532 | 0 | 0 | 1774 | 1770 | 1583 | 1774 | 1770 | 1583 |
| Q Serve(g_s), s | 1.0 | 0.0 | 2.0 | 6.4 | 0.0 | 0.0 | 1.2 | 19.9 | 1.4 | 2.7 | 32.6 | 0.9 |
| Cycle Q Clearg_c c) s | 9.5 | 0.0 | 2.0 | 8.5 | 0.0 | 0.0 | 1.2 | 19.9 | 1.4 | 27 | 32.6 | 0.9 |
| Prop in Lane | 1.00 | | 0.86 | 0.39 | | 0.58 | 1.00 | | 1.00 | 1.00 | | 1.00 |
| Lane Gr Cap (c), vehh | 215 | 0 | 203 | 243 | 0 | 0 | 236 | 2320 | 1038 | 340 | 2344 | 1049 |
| VIC Ratio (X) | 0.50 | 0.00 | 0.18 | 0.58 | 0.00 | 0.00 | 0.30 | 0.57 | 0.06 | 0.44 | 0.75 | 0.04 |
| Avail Cap(c_a) vehm | 298 | 0 | 305 | 338 | 0 | 0 | 277 | 2339 | 1047 | 438 | 2477 | 1108 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upsteam Fileril) | 1.00 | 0.00 | 100 | 1.00 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 100 | 1.00 | 100 |
| Uniform Delay (d), s/veh | 41.7 | 0.0 | 38.3 | 41.1 | 0.0 | 0.0 | 11.7 | 9.2 | 6.1 | 7.9 | 11.1 | 5.7 |
| Ince Delay (d2), slueh | 18 | 0.0 | 0.4 | 21 | 0.0 | 0.0 | 0.7 | 0.3 | 0.0 | 0.9 | 1.2 | 0.0 |
| Initial Q Delay(d3), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%\%le BackOFG(50\%), veh/h | 3.0 | 0.0 | 0.9 | 3.8 | 0.0 | 0.0 | 0.9 | 9.8 | 0.6 | 1.4 | 16.0 | 0.4 |
| LnGrp Delay (d), slveh | 43.5 | 0.0 | 38.7 | 43.2 | 0.0 | 0.0 | 12.4 | 9.5 | 6.1 | 8.8 | 12.3 | 5.7 |
| LnGplos | D | | D | D | | | B | A | A | A | B | A |
| Approach Vol, vehh | | 145 | | | 140 | | | 1447 | | | 1952 | |
| Approach Delay, slveh | | 42.3 | | | 43.2 | | | 9.5 | | | 11.9 | |
| Approach LOS | | D | | | D | | | A | | | B | |

Assigned Phs	1	2	4	5	6	8
Phs Duration ($G+Y+R \mathrm{c}$, s	10.4	69.7	17.8	9.8	70.3	17.8
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	5.5	5.5	5.5	5.5	5.5	5.5
Max Green Setting (Gmax), s	10.3	64.7	18.5	6.5	68.5	18.5
Max Q Clear Time (g_c+11), s	4.7	21.9	11.5	3.2	34.6	10.5
Green Ext Time (P, C) s	0.2	37.2	0.8	0.0	30.2	0.8
hrersection Summay						
HCM 2010 LOS B						

Conficting Flow All	2594	922	1844	0	-	0
Stage 1	1844	-	-	-	-	-
Stage 2	750	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Fotow-up Howy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	20	272	326	-	-	-
Stage 1	111	.	.	-	-	-
Stage 2	427	*	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	20	272	326	-	-	-
Mov Cap-2 Manewver	86	-	.	-	-	-
Stage 1	111	-	-	-	-	-
Stage 2	427	-	-	-	-	-

	＇						4	\uparrow	P		\downarrow	\downarrow
雚为显	．	F37	\％	Hers		5						
Lane Configurations		\＄			4	「	\％	种	「	\％	个个	7
Volume（vehhi）	55	10	25	35	5	45	10	1645	35	40	965	65
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	，	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow，veh／h／n	1900	1863	1900	1900	1863	1863	1863	1863	1863	1863	1863	1863
Adj Flow Rate，vehh	59	11	27	38	5	48	11	1769	38	43	1038	70
Adj No．of Lanes	0	1	0	0	，	1	1	2	1	1	2	1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Cap，vehh	118	27	35	180	20	163	405	2527	1130	235	2599	1163
Arrive On Green	0.10	0.10	0.10	0.10	0.10	0.10	0.01	0.71	0.71	0.03	0.73	0.73
Sat Flow，veh／h	632	260	344	1154	195	1583	1774	3539	1583	1774	3539	1583
Grp Volume（v），veh／h	97	0	0	43	0	48	11	1769	38	43	1038	70
Gp Sat Flow（s），veh／h／h	1235	0	0	1349	0	1583	1774	1770	1583	1774	1770	1583
Q Serve（g＿s），s	5.7	0.0	0.0	0.0	0.0	3.1	0.2	31.4	0.8	0.7	12.1	1.4
Cycte Q Clearg＿c）， s	8.9	0.0	0.0	3.2	0.0	3.1	0.2	31.4	0.8	0.7	12.1	1.4
Prop In Lane	0.61		0.28	0.88		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veih	180	0	0	200	0	163	405	2527	1130	235	2599	1163
VIC Ratio（X）	0.54	0.00	0.00	0.21	0.00	0.30	0.03	0.70	0.03	0.18	0.40	0.06
Avall Cap（c＿a），veth	268	0	0	286	0	259	462	2527	1130	268	2599	1163
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（1）	100	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	48.7	0.0	0.0	45.7	0.0	45.7	4.6	9.0	4.6	9.0	5.5	4.1
Incr Delay（d2），sweh	25	0.0	0.0	0.5	0.0	10	0.0	1.6	0.1	0.4	0.5	0.1
Initial Q Delay（d3），siveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfo（ 50% ），veh／f	3.0	0.0	0.0	1.2	0.0	1.4	0.1	15.6	0.4	0.5	6.1	0.6
LnGrp Delay（d），s／veh	51.2	0.0	0.0	46.2	0.0	46.7	4.6	10.6	4.7	9.4	6.0	4.2
LnGp LOS	D			D		D	A	B	A	A	A	A
Approach Vol，vehh		97			91			1818			1151	
Approach Delay，stveh		51.2			46.4			10.5			6.0	
Approach LOS		D			D			B			A	
limer	1	2	3	4	5	－	7	8				
Assigned Phs	1	2		4	5	6		8				
Pths Duration（G＋Y＋RC）， 3	9.2	84.0		16.8	6.9	86.3		16.8				
Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ）， s	5.5	5.5		5.5	5.5	5.5		5.5				
Max Green Sotting（Gmax），s	5.7	69.8		18.0	5.0	70.5		18.0				
Max Q Clear Time（g＿ctil），s	2.7	33.4		10.9	2.2	14.1		5.2				
Green Ext Time（p＿c），s	0.0	30.6		0.5	0.0	43.6		0.7				
HCM 2010 CHI Delay			11.1									
HCM 2010 LOS			B									

	*	\rightarrow		1	-	4	-	¢	P		1	4
Movement	EEL	EBT	FbR	MEL	WET	WBR	NBL	NBT	NBF	SBL	SBT	SEPR
Lane Configurations	\uparrow	F			4		\%	4 4	7	4	食	P
Volume (veh/h).	135	5	40	20	5	25	50	1760	45.	30	955	85
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Ob), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	100	1.00	1.00	1.00	1.00	1.00	100	100	1.00	100	100	1.00
Adj Sat Flow, veh/h/m	1863	1863	1900	1900	1863	1900	1863	1863	1863	1863	1863	1863
Adj Flow Rate, veh/h	145	5	43	22	5	27	54	1892	48	32	1027	91
Adj No. of Lanes	1	1	0	0	1	0	1	2	1	1	2	1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, vehh	251	20	174	108	37	94	413	2407	1077	198	2372	1061
Arrive On Green	0.12	0.12	0.12	0.12	0.12	0.12	0.04	0.68	0.68	0.03	0.67	0.67
Sat Flow, veh/h	1372	168	1441	467.	308	775	1774	3539	1583	1774	3539	1583
Grp Volume(v), veh/h	145	0	48	54	0	0	54	1892	48	32	1027	91
Grp Sal Flow(s), veh/h/n	1372	0	1608	1550	0	0	1774	1770	1583	1774	1770	1583
Q Serve(g_s), s	6.4	0.0	2.6	0.0	0.0	0.0	0.9	35.8	1.0	0.5	13.1	2.0
Cycle Q Clear (g c), s	92	0.0	26	28	0.0	0.0	0.9	35.8	1.0	0.5	13.1	20
Prop In Lane	1.00		0.90	0.41		0.50	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	251	0	194	239	0	0	413	2407	1077	198	2372	1061
VIC Ratio(X)	0.58	0.00	0.25	0.23	0.00	0.00	0.13	0.79	0.04	0.16	0.43	0.09
Avall Cap(c_a), veh/h	346	0	306	343	0	0	436	2547	1139	236	2543	1138
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter())	100	0.00	1.00	1.00	0.00	0.00	100	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	41.4	0.0	38.8	38.8	0.0	0.0	5.2	10.7	5.1	11.7	7.5	5.6
Incr Delay (d2), siveh	21	0.0	0.7	0.5	0.0	0.0	0.1	1.6	0.0	0.4	0.1	0.0
initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%le BackOTO 50%, veh/h	3.9	0.0	1.2	1.4	0.0	0.0	0.4	17.6	0.4	0.4	6.3	0.8
LnGrp Delay (d), s/veh	43.5	0.0	39.4	39.3	0.0	0.0	5.4	12.3	5.2	12.1	7.6	5.6
LnGplos	D.		D	D			A	B	A	B	A	A
Approach Vol, veh/h		193			54			1994			1150	
Approach Delay, slveh		42.5			39.3			12.0			75	
Approach LOS		D			D			B			A	
mmer	1	4	3	4	5	6	T	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration ($G+Y+R \mathrm{c}$), s	8.4	71.6		17.2	9.3	70.7		172				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	5.5	5.5		5.5	5.5	5.5		5.5				
Max Green Selting (Gmax), s	5.0	70.0		18.5	5.1	69.9		18.5				
Max Q Clear Time (g c $\mathrm{c}+1$), s	2.5	37.8		11.2	2.9	15.1		4.8				
Green Ext Time (p_c), s	0.0	28.4		0.6	0.0	44.6		0.8				
hlersection Summary												
HCM 2010 Ctil Delay			12.6									
HCM 2010 LOS			B									

Int Delay, s/veh 0.1

Movement	EBL	EBR	NBL	NBT	SBT	SER
Vol, vehh	0	30	0	1895	1070	80
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Contol	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	.	-	10
Veh in Median Storage, \#	0	-	-	0	0	
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	0	32	0	2038	1151	86

HCM Control Delay, s	13.4	0	0
HCMLOS	B		

Capacity (veh/h)	603	-	461	-	-
HCM Lane VIC Ratio	-	-	0.07	-	-
HCM Control Delay (s)	0	-	13.4	-	-
HCM Lane LOS	A	-	B		
HCM 95th \%bile Q(veh)	0		0.2		

[^4]| | 4 | | | | | | 4 | 4 | p | | \downarrow | \downarrow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Faminem | | \because | | \% | $\frac{\square}{\text { m }}$ | \% | 1 | - | \% | : | | |
| Lane Configurations | | * | | | 1 | 5 | ${ }^{4}$ | 44 | F | 1 | 4 | T |
| Volume (veh/h) | 50 | 15 | 15 | 20 | 15 | 45 | 35 | 1380 | 30 | 150 | 2045 | 45 |
| Number | 7 | 4 | 14 | 3 | 8 | 18 | 5 | 2 | 12 | 1 | 6 | 16 |
| hilisal Q (Cb), veh | 0 | 0 | 0 | 0 | 0. | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 |
| Parking Bus, Adj | 1.00 | 100 | 100 | 1.00 | 1.00 | 1.00 | 1.00 | 100 | 1.00 | 1.00 | 100 | 1.00 |
| Adj Sat Flow, veh/h/hn | 1900 | 1863 | 1900 | 1900 | 1863 | 1863 | 1863 | 1863 | 1863 | 1863 | 1863 | 1863 |
| Ad Fow Rate, vehh | 54 | 16 | 16. | 22 | 16 | 48 | 38 | 1484 | 32 | 161 | 2199 | 48 |
| Adj No. of Lanes | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 |
| Peak Hour Factor | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 116 | 32 | 22 | 121. | 75 | 140 | 169 | 2535 | 1134 | 321. | 2584 | 1156 |
| Arive On Green | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.03 | 0.72 | 0.72 | 0.05 | 0.73 | 0.73 |
| Sat Flow, velh | 706 | 360 | 244 | 784 | 844. | 1583 | 1774 | 3539 | 1583 | 1774 | 3539 | 1583 |
| Grp Volume(v), veh/h | 86 | 0 | 0 | 38 | 0 | 48 | 38 | 1484 | 32 | 161 | 2199 | 48 |
| Grp Sat Flow(s), vel/h/h | 1310 | 0 | 0 | 1628 | 0 | 1583 | 1774 | 1770 | 1583 | 1774 | 1770 | 1583 |
| Q Serve(g_s), s | 5.1 | 0.0 | 0.0 | 0.0 | 0.0 | 3.1 | 0.6 | 22.5 | 0.6 | 2.6 | 48.7 | 0.9 |
| Cycle Q Clear (g c), s | 7.3 | 0.0 | 0.0 | 2.2 | 0.0 | 3.1 | 0.6 | 22.5 | 0.6 | 2.6 | 48.7 | 0.9 |
| Prop In Lane | 0.63 | | 0.19 | 0.58 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 |
| Lane Grp Cap (c), velih | 169 | 0 | 0 | 196 | 0 | 140 | 169 | 2535 | 1134 | 321. | 2584 | 1156 |
| V/C Ratio(X) | 0.51 | 0.00 | 0.00 | 0.19 | 0.00 | 0.34 | 0.22 | 0.59 | 0.03 | 0.50 | 0.85 | 0.04 |
| Avail Cap(c.a), veh/h | 278 | 0 | 0 | 312 | 0 | 259 | 199 | 2535 | 1134 | 407 | 2584 | 1156 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Fiter(I) | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 100 | 1.00 | 1.00 |
| Uniform Delay (d), s/veh | 49.3 | 0.0 | 0.0 | 46.7 | 0.0 | 47.1 | 16.6 | 7.6 | 4.5 | 7.8 | 10.6 | 4.1 |
| Incr Delay (d2), slveh | 23 | 0.0 | 0.0 | 0.5 | 0.0 | 1.4 | 0.7 | 10 | 0.0 | 12 | 3.8 | 0.1 |
| Initial Q Delay(d3), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ $(50 \%$) veh/lm | 2.7 | 0.0 | 0.0 | 11. | 0.0 | 14 | 0.7 | 113 | 0.3 | 19 | 24.6 | 0.4 |
| LnGp Delay(d), siveh | 51.6 | 0.0 | 0.0 | 47.1 | 0.0 | 48.6 | 17.3 | 8.6 | 4.6 | 9.0 | 14.3 | 4.2 |
| InGpLOS | D | | | D. | | D | B | A | A | A | B | A |
| Approach Vod, veh/h | | 86 | | | 86 | | | 1554 | | | 2408 | |
| Approach Delay, slveh | | 51.6 | | | 47.9 | | | 8.7 | | | 13.8 | |
| Approach LOS | | D | | | D | | | A | | | B | |
| F-6: | | | | | | | | | | | | |
| Assigned Phs | 1 | 2 | | 4 | 5 | 6 | | 8 | | | | |
| Phs Duration ($G+Y+R \mathrm{c}$), s | 10.5 | 84.3 | | 15.2 | 8.9 | 85.8 | | 15.2 | | | | |
| Change Period ($\gamma+\mathrm{Rc}$), s | 5.5 | 5.5 | | 5.5 | 5.5 | 5.5 | | 5.5 | | | | |
| Max Green Setting (Gmax), s | 10.3 | 65.2 | | 18.0 | 5.3 | 70.2 | | 18.0 | | | | |
| Max Q Clear Time ($\left.g_{-} c+11\right)$, s | 4.6 | 24.5 | | 9.3 | 2.6 | 50.7 | | 5.1 | | | | |
| Green Ext Time (p, c), s S. $^{\text {a }}$ | 0.2 | 38.7 | | 0.5 | 0.0 | 19.0 | | 0.6 | | | | |
| freasection summaty | | | | | | | | | | | | |
| HCM 2010 Ctrl DelayHCM 2010 LOS | | | 13.4 | | | | | | | | | |
| | | | B | | | | | | | | |

	\％	－		\％	4	4	4	4	P		1	4
Movement	E8L	EBT	Eter	W8L	WET	MER	NEL	NBT	NER	St1．	S8T	S82
Lane Configurations	毞	\＄			4		\％	畣髙	$\stackrel{7}{1}$	5	Th	F
Volume（veh／h）	110	5	35	50	5	80	85	1405	70	40	1935	45
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q（Qb），veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	100	100	1.00	100	100	1.00	1.00	100	1.00	1.00	100	100
Adj Sat Flow，veh／h／n	1863	1863	1900	1900	1863	1900	1863	1863	1863	1863	1863	1863
Adj Fow Rate，veh／h	118	5	38	54	5	86	91	1511	75	43	2081	48
Adj No．of Lanes	1	1	0	0	1	0	1	2	1	1	2	1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h	221	25	192	111	22	123	183	2360	1056	267	2321	1038
Arrive On Green	0.14	0.14	0.14	0.14	0.14	0.14	0.05	0.67	0.67	0.03	0.66	0.66
Sat Flow，veh／m	1300	187.	1424	457.	166	909	1774	3539	1583	1774	3539	1583
Grp Volume（v），veh／h	118	0	43	145	0	0	91	1511	75	43	2081	48
Grp Sat Flow（s），veh／h／h	1300	0	1611	1532	0	0	1774	1770	1583	1774	1770	1583
Q Serve（g＿s）， 5	1.9	0.0	2.4	6.5	0.0	0.0	1.6	25.1	1.7	0.8	49.6	1.1
Cycle Q Clear（ g ， c ， s	10.9	0.0	24	9.0	0.0	0.0	1.6	25.1	17	0.8	49.6	11
Prop In Lane	1.00		0.88	0.37		0.59	1.00		1.00	1.00		1.00
Lane Grp Cap（c），vehth	221	0	218	256	0	0	183	2360	1056	267	2321	1038
VIC Ratio（X）	0.53	0.00	0.20	0.57	0.00	0.00	0.50	0.64	0.07	0.16	0.90	0.05
Avall Cap（c－a），veh／h	283.	0	295	328	0	0	217.	2360	1056	386	2401	1074
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（））	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	42.7	0.0	38.8	41.6	0.0	0.0	23.6	9.8	5.9	8.2	14.5	6.2
Incr Delay（d2），slveh	20	0.0	0.4	2.0	0.0	0.0	21	0.6	0.0	0.3	4.8	0.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％le BackOfO 50% ）vehiln	33	0.0	11.	4.0	0.0	0.0	18	12.4	0.7	0.4	25.5	0.5
LnGrp Delay（d），siveh	44.7	0.0	39.2	43.5	0.0	0.0	25.7	10.4	5.9	8.5	19.3	6.2
LnGrpLOS	D		D	D			C	B	A	A	B	A
Approach Vol，veh／h		161			145			1677			2172	
Approach Delay，s／veh		433			43.5			11.0			18.8	
Approach LOS		D			D			B			B	
Lmer	1	2	3	4	5	0	7	8				
Assigned Phs	1	2		4	5	6		8				
Phs Duration（ $G+Y+R \mathrm{c}$ ） s	9.0	72.8		19.1 ．	10.1	71.7		19.1				
Change Period（ $Y+\mathrm{Rc}$ ），s	5.5	5.5		5.5	5.5	5.5		5.5				
Max Green Selling（Gmax），s	10.3	64.7		18.5	6.5	68.5		18.5				
Max Q Clear Time（ $g_{\text {c }}+11$ ），	2.8	27.1		12.9	3.6	51.6		11.0				
Green Ext Time（p．c），s	0.0	35.7		0.7 ．	0.0	14.6		0.9				
hereseclion Summary												
HCM 2010 Ctri Delay			17.5									
HCM 2010 LOS			B									

HCM Control Delay, s	23.9	0	0
HCMLOS	C		

Capacity (veh h)	242	- 212	-	-
HCM Lane VIC Ratio	-	0.101	-	-
HCM Control Delay (s)	0	23.9	-	-
HCM Lane LOS	A	C. C	-	-
HCM 95th \%tile Q(veh)	0	0.3		

April 15, 2016

Michael Chalona

Logan Simpson
123 N College Ave
Suite 206
Fort Collins, CO 80524
Re: Vineyard/Goldelm ODP
Description of project: This is a request to master plan and develop three parcels on S College Ave (Parcel \#'s 9611100901, 9611100003 \& 9611100031). This coordinated development of this site will result in the construction of a shared private drive connecting the intersection of Venus Ave and Crestridge St with a right in and right out to S. College Ave north of the property. A new lot will also be created through this development on the east side of the private drive. The parcels are located in the Medium Density Mixed-Use Neighborhood (MMN) and Service Commercial (CS) zone districts. This proposal will be subject to Planning \& Zoning Board (Type II) review.

Please see the following summary of comments regarding the project request referenced above. The comments offered informally by staff during the Conceptual Review will assist you in preparing the detailed components of the project application. Modifications and additions to these comments may be made at the time of formal review of this project. If you have any questions regarding these comments or the next steps in the review process, you may contact the individual commenter or direct your questions through the Project Planner, Jason Holland, at 970-224-6126 or jholland@fcgov.com.

Comment Summary:

Department: Zoning

Contact: Marcus Glasgow, 970-416-2338, mglasgow@fcgov.com

1. LUC $4.6(\mathrm{D})(3)$ Buildings shall be limited to maximum of Three (3) stories. MMN Zoning district.
2. Any residential use consisting in whole or in part of multi-family dwellings that contain more than fifty (50) dwelling units, or more than 75 bedrooms would be an allowed use for each zone district subject to a Planning and Zoning Board review.
MMN- LUC 4.6(B)(3)(a)3.
CS- LUC 4.22(B)(3)(a)1.
3. Vehicle sales and leasing establishments for cars and light trucks is an allowed use only in the CS zone district subject to an Administrative review.
LUC 4.22(B)(2)(c)14.
4. Places of worship or assembly is an allowed use in each zone district subject to an Administrative review. MMN- LUC 4.6(B)(2)(b)1.
CS- LUC 4.22(B)(2)(b)1.
5. Please show Pedestrian/Bicycle routes and access points.
6. Is there plans for open space or parks? Plan shows $1,554,220 \mathrm{sq}$. ft. of total space with 620,500 sq. ft. of that being impervious.
7. Street trees are required to be installed along all abutting right-of-way.
8. The use of the property of uses not approved prior to Development Review is prohibited. (Vehicle storage)

Department: Water-Wastewater Engineering

Contact: Shane Boyle, 970-221-6339, sboyle@fcgov.com

1. 2. This project site is located within the Fort Collins-Loveland Water District and the South Fort Collins Sanitation District. Please contact them for any water and sewer requirements.

Department: Stormwater Engineering

Contact: Heidi Hansen, 970-221-6854, hhansen@fcgov.com

1. 2. A portion of this property is located in the City regulated, 100 -year Fossil Creek floodway. Any development within the floodway must obtain a floodplain use permit and comply with the safety regulations of Chapter 10 of City Municipal Code. A FEMA Flood Risk Map is attached.
1. 2. Per Sections 10-102 and 10-104 of the City Municpal Code, construction of residential and/or mixed-use structures is prohibited within the 100-year floodway.
1. 3. Construction of non-residential and/or accessory structures is allowed in the floodway provided the structures meet all the requirements of Chapter 10 including is allowed as long as the lowest finished floor of the building, and all duct work, heating, ventilation, electrical systems, etc. are elevated or floodproofed to the Regulatory Flood Protection Elevation (RFPE). The RFPE is the Base Flood Elevation (BFE) plus an additional amount for safety. RFPE $=$ BFE +18 -inches for non-residential structures and RFPE=BFE + 12-inches for accessory structure. A no-rise certification as described below is also required for any new structure in the floodway.
1. 4. If floodproofing is chosen as on option rather than elevating the structure, all the requirements of Section 10-38 of City Code must be met. Floodproofing Guidelines as well as a FEMA Floodproofing Certificate (which will be required before construction begins, and again after construction is complete and prior to issuing a Certificate of Occupancy) can be obtained at http://www.fcgov.com/utilities/what-we-do/stormwater/flooding/forms-documents. FEMA Technical Bulletin 3, "Non-Residential Floodproofing - Requirements and Certification" can be found at http://www.fema.gov/media-library-data/20130726-1511-20490-5294/job6.pdf.
1. 5. Nonstructural development (grading, fencing, detention ponds, hard surface paths, trails, walkways, vegetation, etc.) is allowed in the floodway as long as a floodway no-rise certification is prepared by a professional engineer, licensed in the State of Colorado, proving that the development will not cause a rise in the Base Flood Elevation or change the floodway boundary. Nonstructural development must meet the requirements in Section 10-105 of the Code.
1. 6 . Storage of equipment or materials in the floodway, whether temporary or permanent, is prohibited.
2. 7. A portion of this property is within an Erosion Buffer Zone for Fossil Creek. Per Section 10-202 of the Code, the following development is prohibited: New Construction of Any Structure, Detention Ponds, Placement of Fill, Outdoor Storage, Driveways and Parking

Areas, and Irrigated and Nonnative Vegetation. Some improvements such as Fencing, Hard Surface Paths, Bridges and Utilities are allowed provided they meet the requirements of Section 10-202.
8. 8. Development review checklists and permit application forms for floodplain requirements can be obtained at
http://www.fcgov.com/utilities/what-we-do/stormwater/flooding/forms-documents. Please utilize these documents when preparing your plans for submittal.
9. 9. Please show the boundaries of the floodway and erosion buffer zone on site drawings as applicable. Contact Beck Anderson of Stormwater Master Planning at banderson@fcgov.com for floodplain CAD line work.
10. 10. Please contact Heidi Hansen with any questions about these comments or to schedule a meeting to discuss any requirements for development in the floodplain. hhansen@fcgov.com 970-221-6854.
11. 1. The design of this site must conform to the drainage basin design of the Fossil Creek Basin Master Drainage Plan as well the Fort Collins Stormwater Criteria Manual.
12. 2. A drainage report and construction plans are required and they must be prepared by a Professional Engineer registered in the State of Colorado. The drainage report must address the four-step process for selecting structural BMPs. There is a final site inspection required when the project is complete and the maintenance is handed over to an HOA or another maintenance organization.
13. 3 . Onsite detention is required for the runoff volume difference between the 100 -year developed flow rate and the 2-year historic release rate. In the Fossil Creek basin the two year historic release rate is 0.2 cfs/acre.
14. 4. There is potential for significant erosion in Lang Gulch, as well as overtopping of the railroad in a large storm event. These existing drainage conditions will need to be accounted for in the design and development of this site.
15. 5. Fifty percent of the site runoff is required to be treated using the standard water quality treatment as described in the Fort Collins Stormwater Manual, Volume 3-Best Management Practices (BMPs).
(http://www.fcgov.com/utilities/business/builders-and-developers/development-forms-guideli nes-regulations/stormwater-criteria) Extended detention is the usual method selected for water quality treatment; however the use of any of the BMPs is encouraged.
16. 6. Low Impact Development (LID) requirements are required on all new or redeveloping property which includes sites required to be brought into compliance with the Land Use Code. These require a higher degree of water quality treatment with one of the two following options:
a. 50% of the newly added or modified impervious area must be treated by LID techniques and 25% of new paved areas must be pervious.
b. 75% of all newly added or modified impervious area must be treated by LID techniques.
17. 7. Standard operating procedures (SOPs) for all onsite drainage facilities will be included as part of the Development Agreement. More information and links can be found at: http://www.fcgov.com/utilities/what-we-do/stormwater/stormwater-quality/low-impact-develo pment
18. 8. Per Colorado Revised Statute §37-92-602 (8) effective August 5, 2015, criteria regarding detention drain time will apply to this project. As part of the drainage design, the engineer will be required to show compliance with this statute using a standard spreadsheet (available on request) that will need to be included in the drainage report. Upon completion of the project, the engineer will also be required to upload the approved spreadsheet onto the Statewide Compliance Portal. This will apply to any volume based stormwater storage, including extended detention basins.
19. 9. The 2016 city wide Stormwater development fee (PIF) is $\$ 8,217 /$ acre for new impervious
area over 350 sq.-ft., and there is a $\$ 1,045.00 /$ acre review fee. No fee is charged for existing impervious area. These fees are to be paid at the time each building permit is issued. Information on fees can be found at:
http://www.fcgov.com/utilities/business/builders-and-developers/plant-investment-developme nt -fees or contact Jean Pakech at 221-6375 for questions on fees. There is also an erosion control escrow required before the Development Construction permit is issued. The amount of the escrow is determined by the design engineer, and is based on the site disturbance area, cost of the measures, or a minimum amount in accordance with the Fort Collins Stormwater Manual.

Department: Fire Authority
 Contact: Jim Lynxwiler, 970-416-2869, ilynxwiler@poudre-fire.org

1. WATER SUPPLY

Hydrant spacing and flow must meet minimum requirements based on type of occupancy. Code language provided below.
> IFC 508.1 and Appendix B: COMMERCIAL REQUIREMENTS: Hydrants to provide 1,500 gpm at 20 psi residual pressure, spaced not further than 300 feet to the building, on 600 -foot centers thereafter.
>IFC 508.1 and Appendix B: RESIDENTIAL REQUIREMENTS: Within the Urban Growth Area, hydrants to provide $1,000 \mathrm{gpm}$ at 20 psi residual pressure, spaced not further than 400 feet to the building, on 800 -foot centers thereafter.
2. FIRE ACCESS

Fire access is required to within 150 ft of any building. Code language provided below.
> IFC 503.1.1: Approved fire Lanes shall be provided for every facility, building or portion of a building hereafter constructed or moved into or within the jurisdiction. The fire apparatus access road shall comply with the requirements of this section and shall extend to within 150 feet of all portions of the facility and all portions of the exterior walls of the first story of the building as measured by an approved route around the exterior of the building or facility. When any portion of the facility or any portion of an exterior wall of the first story of the building is located more than 150 feet from fire apparatus access, the fire code official is authorized to increase the dimension if the building is equipped throughout with an approved, automatic fire-sprinkler system.

3. PRIVATE DRIVES

Private drives which serve as fire lanes will require an Emergency Access Easement and standard Fire Lane specifications shall apply.

FIRE LANE SPECIFICATIONS

A fire lane plan shall be submitted for approval prior to installation. In addition to the design criteria already contained in relevant standards and policies, any new fire lane must meet the following general requirements:
> Shall be designated on the plat as an Emergency Access Easement.
$>$ Maintain the required 20 foot minimum unobstructed width \& 14 foot minimum overhead clearance.
$>$ Be designed as a flat, hard, all-weather driving surface capable of supporting 40 tons.
> Dead-end fire access roads in excess of 150 feet in length shall be provided with an approved area for turning around fire apparatus.
$>$ The required turning radii of a fire apparatus access road shall be a minimum of 25 feet inside and 50 feet outside. Turning radii shall be detailed on submitted plans.
> Be visible by painting and/or signage, and maintained unobstructed at all times.
> Additional access requirements exist for buildings greater than 30' in height. Refer to Appendix D of the 2012 IFC or contact PFA for details.
International Fire Code 503.2.3, 503.2.4, 503.2.5, 503.3, 503.4 and Appendix D; FCLUC
3.6.2(B)2006 and Local Amendments.
4. DEAD-END FIRE LANES

Be advised that any dead-end road over 660ft in length requires a second point of access. Code language provided below.
> FCLUC 3.6.2(B)2006; 06IFC 503.2.5 and Appendix D: Dead-end fire apparatus access roads cannot exceed 660 feet in length. Dead-end fire access roads in excess of 150 feet in length shall be provided with an approved area for turning around fire apparatus.
5. BUILDINGS OVER 30FT IN HEIGHT

Be advised any building over 30 ft in height triggers additional fire access requirements. Code language provided below. See also IFC Appendix D for further details.

AERIAL FIRE APPARATUS ACCESS ROADS:

WHERE REQUIRED - IFC D105.1: Where the vertical distance between the grade plane and the highest roof surface exceeds 30 feet, approved aerial fire apparatus access roads shall be provided. For purposes of this section, the highest roof surface shall be determined by measurement to the eave of a pitched roof, the intersection of the roof to the exterior wall, or the top of parapet walls, whichever is greater.
WIDTH - IFC D105.2; FCLUC 3.6.2(B)2006; and Local Amendments: Aerial fire apparatus access roads shall have a minimum unobstructed width of 30 feet, exclusive of shoulders, in the immediate vicinity of the building or portion thereof.
PROXIMITY TO BUILDING - IFC D105.3: At least one of the required access routes meeting this condition shall be located within a minimum of 15 feet and a maximum of 30 feet from the building, and shall be positioned parallel to one entire side of the building. The side of the building on which the aerial fire apparatus access road is positioned shall be approved by the fire code official.
6. FIRE CONTAINMENT

Any building exceeding 5000 square feet shall be sprinklered or fire contained. If containment is used, the containment construction shall be reviewed and approved by the Poudre Fire Authority prior to installation.

Department: Environmental Planning

Contact: Rebecca Everette, 970-416-2625, reverette@fcgov.com

1. According to Section $2.3 .2(\mathrm{H})(3)(5)$ of the Land Use Code, "the overall development plan shall show the general location and approximate size of all natural areas, habitats and features within its boundaries and shall indicate the applicant's proposed rough estimate of the natural area buffer zones as required pursuant to Section 3.4.1(E)." The plans will need to include approximate buffer zones for, e.g., the Fossil Creek and its tributaries, natural spring, any wetlands, rock outcropping and any other natural features present on the site.
2. Please include a note on the ODP that indicates something similar to the following, "This Overall Development Plan shows the general location and approximate size of all natural areas, habitats, and features within its boundaries and the proposed rough estimate of the natural area buffer zone as required by Land Use Code Section 3.4.1(E). Detailed mapping of a site's natural areas, habitats, and features will be provided at the time of individual PDP submittals. General buffer zones shown on this ODP may be reduced or enlarged by the decision maker during the PDP process."
3. An Ecological Characterization Study will be required at the PDP stage, as the site is within 500 feet of known natural habitats (Fossil Creek and tributaries, wetlands, wet meadows, natural spring, native grassland, and rock outcropping). An ECS has already been submitted for the Goldelm site; however, this ECS will need to be either updated to include the Vineyard Church site or a separate ECS will need to be prepared for that site.

Please note the buffer zone standards range from 50-100' for these features, as identified in

Section 3.4.1(E) of the Land Use Code, as you proceed with your site design process.
The Ecological Characterization Study should include a delineation of all wetlands, delineation of the rock outcropping, and detailed recommendations for protecting and enhancing the features that are on or adjacent to the site. The report should also address whether the Bell's Twinpod (Physaria bellii) is observed on the site.

Please contact me if you would like to discuss the scope and requirements of the ECS further. Please note that the Ecological Characterization Study is due a minimum of 10 days prior to submittal of a PDP (but not the ODP).
4. Exact buffer zones will be established at the PDP stage. However, please note that within any buffer zones, according to Article 3.4.1(E)(1)(g), the City has the ability to determine if the existing landscaping is incompatible with the purposes of the buffer zone. Please ensure that your ECS discusses the existing vegetation and identifies potential restoration options. If it is determined to be insufficient, then restoration and mitigation measures will be required.
5. This project must comply with the following standard, as it is adjacent to the Redtail Grove Natural Area, Section 3.4.1(L) Compatibility with Public Natural Areas or Conserved Land. If the project contains or abuts a publicly owned natural area or conserved land, the development plan shall be designed so that it will be compatible with the management of such natural area or conserved land. In order to achieve this, the development plan shall include measures such as barriers or landscaping measures to minimize wildlife conflicts, setbacks or open space tracts to provide a transition between the development and the publicly owned natural area or conserved land, and educational signage or printed information regarding the natural values, management needs and potential conflicts associated with living in close proximity to such natural area or conserved land. Please ensure that the ODP and subsequent PDPs conform to this standard.
6. Our city has an established identity as a forward-thinking community that cares about the quality of life it offers its citizens and has many sustainability programs and goals that may benefit your project. Of particular interest may be the:

1. ClimateWise program: fcgov.com/climatewise/
2. Zero Waste Plan and the Waste Reduction and Recycling Assistance Program (WRAP): fcgov.com/recycling/pdf/_20120404_WRAP_ProgramOverview.pdf, contact Caroline Mitchell at 970-221-6288 or cmtichell@fcgov.com
3. Green Building Program: fcgov.com/enviro/green-building.php, contact Tony Raeker at 970-416-4238 or traeker@fcgov.com
4. Solar Energy: www.fcgov.com/solar, contact Norm Weaver at 970-416-2312 or nweaver@fcgov.com
5. Integrated Design Assistance Program: fcgov.com/idap, contact Gary Schroeder at 970-224-6003 or gschroeder@fcgov.com
6. Nature in the City Strategic Plan: fcgov.com/planning/natureinthecity/?
key=advanceplanning/natureinthecity/, contact Justin Scharton at 970-221-6213 or jscharton@fcgov.com

Please consider the City's sustainability goals and ways for your development to engage with these efforts, and let me know if I can help connect you to these programs.
7. The southern detention area on the Goldelm lot should be moved outside the buffer from the rock outcropping, as it is not compatible with the protection of that resource.

Department: Engineering Development Review

Contact: Marc Ragasa, 970.221.6603, mragasa@fcgov.com

1. Larimer County Road Impact Fees and Street Oversizing Fees are due at the time of building permit. Please contact Matt Baker at 224-6108 if you have any questions.
2. The City's Transportation Development Review Fee (TDRF) is due at the time of submittal. For additional information on these fees, please see: http://www.fcgov.com/engineering/dev-review.php
3. Any damaged curb, gutter and sidewalk existing prior to construction, as well as streets, sidewalks, curbs and gutters, destroyed, damaged or removed due to construction of this project, shall be replaced or restored to City of Fort Collins standards at the Developer's expense prior to the acceptance of completed improvements and/or prior to the issuance of the first Certificate of Occupancy. All public sidewalk, driveways and ramps existing or proposed adjacent or within the site need to meet ADA standards, if they currently do not, they will need to be reconstructed so that they do meet current ADA standards as a part of this project.
4. This project is responsible for dedicating any right-of-way and easements that are necessary or required by the City for this project. This shall including the standard utility easements that are to be provided behind the right-of-way (15 foot along an arterial (College Ave), and 9 foot along all other street classifications).
5. The traffic study will be key in determining the lengths of the right turn lanes needed and the impact to the intersections and the neighborhood.
6. Utility plans will be required and a Development Agreement will be recorded once the project is finalized.
7. LCUASS parking setbacks (Figure 19-6) apply and will need to be followed depending on parking design.
8. For Venus Drive (existing) - It appears that adequate row should be in place, provided that the roadways are not offset within the existing row. Additional row will need to be dedicated to accommodate the standard parkway and sidewalk section if it will not fit into the current row due to an offset of the road.
9. For Crestridge Road and Venus Drive - The roadways will need to be designed and improved along the frontage of this property by this development. Curb, gutter and sidewalk will need to be designed and built. The roadway pavement will need to be replaced as it does not meet City Standards.
10. Venus Drive or an adequate access needs to be extended north thru this site to serve the parcel to the north. Adequate design and dedication of row/easement shall be provided. The plan that was submitted shows a private drive making this connection, which looks like it will work for this. The connection from Venus to the site to the north does not need to be a street, it can be a drive provided it is designed adequately (width, features, sidewalk connection and grades) to meet Transportation and Poudre Fire Authority needs.
11. All design for College Ave (State Highway 287) will need to meet CDOT design standards and criteria and will need to be approved by CDOT. Access permits will need to be obtained for any changes to existing access points, new access points and any work within the SH287 ROW. Design parameters not covered by CDOT design criteria need to meet City of Fort Collins design standards and criteria.
12. All other public improvements must be designed and built in accordance with the Larimer County Urban Area Street Standards (LCUASS). They are available online at: http://www.larimer.org/engineering/GMARdStds/UrbanSt.htm
13. There is an approved and adopted access control plan for SH 287 that identifies where accesses can be placed and what kind of access they can be. The northern access point is to be a right-in right-out access point.
14. It is possible a raised median in SH 287 will need to be installed by this project to control access. The access points will need to be controlled and that is one way in which to do so. Per the adopted access control plan a median will be needed in the short term and the long term. Ideally this median would be able to be designed to accommodate the interim and ultimate roadway sections.
15. Per the access control plan the intersection of SH287/ Crestridge Road/ Smokey Street could be signalized if the streets (Crestridge and Smokey) could be aligned, the intersection meets traffic signal warrants and the grade of the intersection approaches are reduced. If the intersection cannot be aligned then the plan shows that this access shall become a right-in right-out intersection. The conversion of the intersection to a right-in right-out configuration will probably be triggered by the additional traffic that would be added to this intersection by this development. This intersection currently has a high accident rate due to the offset in the roads and limited visibility due to not quite being at the crest of the hill. The plan submitted does not show the realignment of Crestridge.
16. I do not know exactly how much row actually exists along College Ave, but it does appear that close to adequate row does exist. A 72 foot minimum half row is needed where a right turn lane is not needed; where a right turn lane is needed a half row of 84 feet minimum is needed. More than likely a preliminary layout design will be needed to determine exactly how much row is needed.
17. Any necessary additional row needed for the ultimate SH 287 cross section shall be provided.
18. There will probably need to be an interim and ultimate design done for SH 287 . An ultimate design will be needed to determine where sidewalk and curb and gutter shall be placed and if there are any design parameters that need to be accommodated. If the ultimate section is not what is constructed a design for the interim improvements will need to be provided. SH287 is considered an arterial roadway thus a 1000 feet of preliminary offsite design in each direction shall be provided as a part of roadway design.
19. This project will need to install sidewalk along the street frontages adjacent to the site, plus any off-site that may be needed to meet level of service criteria.
20. A 15 utility easement is needed along SH 287 .

A 9 foot utility easement is needed along Crestridge and Venus.
21. Some of the improvements to be installed along College Ave would be eligible for Street Oversizing reimbursement. Only those improvements which meet the oversizing criteria and are designed and installed in the ultimate location are eligible for reimbursement. Example the sidewalk along College will need to be installed in the ultimate location and the standards is a sidewalk wider than a local street - thus the width 3.5 feet of the 8 foot wide sidewalk is eligible for reimbursement.
22. All fences, barriers, posts or other encroachments within the public right-of-way are only permitted upon approval of an encroachment permit. Applications for encroachment permits shall be made to Engineering Department for review and approval prior to installation. Encroachment items shall not be shown on the site plan as they may not be approved, need to be modified or moved, or if the permit is revoked then the site/ landscape plan is in non-compliance.
23. Bike parking required for the project cannot be placed within the right-of-way and if placed just behind the right-of-way need to be placed so that when bikes are parked they do not extend into the right-of-way.
24. In regards to construction of this site. The public right-of-way shall not be used for staging or storage of materials or equipment associated with the Development, nor shall it be used for parking by any contractors, subcontractors, or other personnel working for or hired by the Developer to construct the Development. The Developer will need to find a location(s) on private property to accommodate any necessary Staging and/or parking needs associated with the completion of the Development. Information on the location(s) of these areas will be required to be provided to the City as a part of the Development Construction Permit application.

Department: Electric Engineering

Contact: Tyler Siegmund, 970-416-2772, tsiegmund@fcgov.com

1. Electric capacity fees, development fees, building site charges and any system modification charges necessary to feed the site will apply to this development. Please visit the following website for an estimate of charges and fees:
http://www.fcgov.com/utilities/business/builders-and-developers/plant-investment-developme nt-fees
2. Light and Power has electric facilities south of the site that can be extend into the development to provide power.
3. Please contact Light \& Power Engineering if you have any questions at 221-6700. Please reference our policies, development charge processes, and use our fee estimator at http://www.fcgov.com/utilities/business/builders-and-developers.

Department: Advance Planning

Contact: Martina Wilkinson, 970-221-6887, mwilkinson@fcgov.com

1. A traffic impact study was already submitted with the CDR. This will need to be reviewed, and it is recommended that a separate meeting be set up to discuss short term and long term traffic approach, including improvements along College.
2. We'll be interested in discussing bike and ped connections to north Natural Areas and future Fossil Creek Trail extension that will go under the RR tracks.

Planning Services

Contact: Jason Holland, 970-224-6126, iholland@fcgov.com

1. Show the boundary / limits of the ODP and this would need to include the existing and proposed limits of the Crestridge right of way, which would need to be a part of the ODP in tandem with the traffic study.
2. Coordinate with Goldelm and show all spur trail connections and proposed routes including the approximate location of the main City trail through the Redtail natural area. Show a distinct linetype and label the public trail connections.
3. Re-alignment of Crestridge, show the existing and proposed ROW. Label which phase will include the construction of this area with and which phase will include the traffic signal.
4. Would recommend that the ODP include an accurate demarcation of the rock outcroppings using a flagged survey for Lot 2 so that there are no surprises at the PDP phase. Make rock outcropping lines and all buffer lines bolder and directly labeled in addition to the legend.
5. The ODP will need to demonstrate that it satisfies connectivity standards to ensure ped./bike connectivity to the adjacent Skyview neighborhood to the south. This is explained in detail in in LUC sections 3.6.3(F) and 3.2.2(C)(6). As part of this requirement, show the spur trail access through Lots 1 and 2, along the southern boundary of the ODP. Construction of the trail spur shall be a part of the ODP and subsequent PDP.
6. Would recommend looking at the feasibility of slightly straightening out north end of Venus Avenue. This would make Lot 2 slightly large and improve the road alignment.
7. Include standard ODP notes and land use table on the site plan with the formal submittal.
8. The proposed development project is subject to a Type 2 (Planning and Zoning Board) review and public hearing. The applicant for this development request is required to hold a neighborhood information meeting prior to formal submittal of the proposal. Neighborhood meetings offer an informal way to get feedback from your surrounding neighbors and discover any potential hiccups prior to the formal hearing. Please contact me, at 221-6750, to assist you in setting a date, time, and location. I and possibly other City staff, would be present to facilitate the meeting.
9. Please see the Development Review Guide at www.fcgov.com/drg. This online guide features a color coded flowchart with comprehensive, easy to read information on each step in the process. This guide includes links to just about every resource you need during development review.
10. This development proposal will be subject to all applicable standards of the Fort Collins Land Use Code (LUC), including Article 3 General Development Standards. The entire LUC is available for your review on the web at http://www.colocode.com/ftcollins/landuse/begin.htm.
11. If this proposal is unable to satisfy any of the requirements set forth in the LUC, a Modification of Standard Request will need to be submitted with your formal development proposal. Please see Section 2.8.2 of the LUC for more information on criteria to apply for a Modification of Standard.
12. Please see the Submittal Requirements and Checklist at: http://www.fcgov.com/developmentreview/applications.php.
13. The request will be subject to the Development Review Fee Schedule that is available in the Community Development and Neighborhood Services office. The fees are due at the time of submittal of the required documents for the appropriate development review process by City staff and affected outside reviewing agencies. Also, the required Transportation Development Review Fee must be paid at time of submittal.
14. When you are ready to submit your formal plans, please make an appointment with Community Development and Neighborhood Services at (970)221-6750.

Pre-Submittal Meetings for Building Permits

Pre-Submittal meetings are offered to assist the designer/builder by assuring, early on in the design, that the new commercial or multi-family projects are on track to complying with all of the adopted City codes and Standards listed below. The proposed project should be in the early to mid-design stage for this meeting to be effective and is typically scheduled after the Current Planning conceptual review meeting.

Applicants of new commercial or multi-family projects are advised to call 970-416-2341 to schedule a pre-submittal meeting. Applicants should be prepared to present site plans, floor plans, and elevations and be able to discuss code issues of occupancy, square footage and type of construction being proposed.

Construction shall comply with the following adopted codes as amended:

20012 International Building Code (IBC)
2012 International Residential Code (IRC)
20012 International Energy Conservation Code (IECC)
2012 International Mechanical Code (IMC)
2012 International Fuel Gas Code (IFGC)
2012 International Plumbing Code (IPC) as amended by the State of Colorado
2014 National Electrical Code (NEC) as amended by the State of Colorado
Accessibility: State Law CRS 9-5 \& ICC/ANSI A117.1-2009.
Snow Load Live Load: 30 PSF / Ground Snow Load 30 PSF.
Frost Depth: 30 inches.
Wind Load: 100- MPH 3 Second Gust Exposure B.
Seismic Design: Category B.
Climate Zone: Zone 5.
Energy Code Use

1. Single Family; Duplex; Townhomes: 2012 IRC Chapter 11 or 2012 IECC Chapter 4.
2. Multi-family and Condominiums 3 stories max: 2012 IECC Chapter 4 Residential Provisions.
3. Commercial and Multi-family 4 stories and taller: 2012 IECC Chapter 4 Commercial Provisions.

Fort Collins Green Code Amendments effective starting 2/17/2014. A copy of these requirements can be obtained at the Building Office or contact the above phone number.

City of Fort Collins
Building Services
Plan Review
970-416-2341

Centre for Advanced Technology Single-family Attached

[^5]
General Information

All proposed development projects begin with Conceptual Review. Anyone with a development idea can schedule a Conceptual Review meeting to get feedback on prospective development ideas. At this stage, the development idea does not need to be finalized or professionally presented. However, a sketch plan and this application must be submitted to City Staff prior to the Conceptual Review meeting. The more information you are able to provide, the better feedback you are likely to get from the meeting. Please be aware that any information submitted may be considered a public record, available for review by anyone who requests it, including the media.
Conceptual Reviews are scheduled on three Monday mornings per month on a "first come, first served" basis. One 45 meeting is allocated per applicant and only three conceptual reviews are done each Monday morning. Conceptual Review is a free service. Complete applications and sketch plans must be submitted to City Staff no later than 5 pm, two Tuesdays prior to the meeting date. Application materials must be e-mailed to currentplanning@fcgov.com. If you do not have access to e-mail, other accommodations can be made upon request.

At Conceptual Review, you will meet with Staff from a number of City departments, such as Community Development and Neighborhood Services (Zoning, Current Planning, and Development Review Engineering), Light and Power, Stormwater, Water/Waste Water, Advance Planning (Long Range Planning and Transportation Planning) and Poudre Fire Authority. Comments are offered by staff to assist you in preparing the detailed components of the project application. There is no approval or denial of development proposals associated with Conceptual Review. At the meeting you will be presented with a letter from staff, summarizing comments on your proposal.
BOLDED ITEMS ARE REQUIRED *The more info provided, the more detailed your comments from staff will be.* Contact Name(s) and Role(s) (Please identify whether Consultant or Owner, etc) Cathy Mathis - TBGroup
Matt Rankin-r4 Architects; Tyler Texeira - Beacon Construction
Business Name (if applicable) TBGroup
Your Mailing Address 444 Mountain Avenue, Berthoud CO 80513
Phone Number 970.532.5891 Email Address cathy@tbgroup.us
Site Address or Description (parcel \# if no address)
Parcel Number 97230-00-904

Description of Proposal (attach additional sheets if necessary) Construction of $+/-34$ units of single family attached units on
approximatley 7.31 acres. The site is located in the Employment Zone disctrict and is a portion of Parcel B of the Centre For Advanced Technology ODP.

Proposed Use Single Family Attached Existing Use Vacant
Total Building Square Footage $+/-61,000$ S.F. Number of Stories 1 Lot Dimensions $+/-575^{\prime} \times 525$ '
Age of any Existing Structures None
Info available on Larimer County's Website: http://www.co.larimer.co.us/assessor/query/search.cfm
If any structures are 50+ years old, good quality, color photos of all sides of the structure are required for conceptual.
Is your property in a Flood Plain? \quad Yes $\not 又$ No If yes, then at what risk is it?
Info available on FC Maps: http://gisweb.fcgov.com/redirect/default.aspx?layerTheme=Floodplains.
Increase in Impervious Area \qquad S.F. (Approximate amount of additional building, pavement, or etc. that will cover existing bare ground to be added to the site)

Suggested items for the Sketch Plan:

Property location and boundaries, surrounding land uses, proposed use(s), existing and proposed improvements (buildings, landscaping, parking/drive areas, water treatment/detention, drainage), existing natural features (water bodies, wetlands, large trees, wildlife, canals, irrigation ditches), utility line locations (if known), photographs (helpful but not required). Things to consider when making a proposal: How does the site drain now? Will it change? If so, what will change?
$\stackrel{\circ}{-}$ \square

Community Development and

April 08, 2016

Cathy Mathis
TBGroup
444 Mountain Ave
Berthoud, CO 80513

Re: Centre for Advanced Technology - Single-family Attached

Description of project: This is a request to construct 34 units of single-family attached units (parcel \#9723000904). The units will be organized around private drive leading from Worthington Ave. This development is proposed on Parcel B of the Centre for Advanced Technology Amended ODP adopted in January of 2012. The site is located in the Employment (E) zone district. This proposal will be subject to Planning \& Zoning Board (Type II) review.

Please see the following summary of comments regarding the project request referenced above. The comments offered informally by staff during the Conceptual Review will assist you in preparing the detailed components of the project application. Modifications and additions to these comments may be made at the time of formal review of this project. If you have any questions regarding these comments or the next steps in the review process, you may contact the individual commenter or direct your questions through the Project Planner, Clay Frickey, at 970-224-6045 or cfrickey@fcgov.com.

Comment Summary:

Department: Zoning

Contact: Ali van Deutekom, 970-416-2743, avandeutekom@fcgov.com

1. LUC 3.2.2(C)(4)(b) There is a minimum bicycle parking requirement of one per bedroom. 60% of these spaces must be enclosed.
2. How will trash be handled?

Department: Water-Wastewater Engineering
 Contact: Shane Boyle, 970-221-6339, sboyle@fcgov.com

1. Existing water mains in the vicinity include an 8 -inch main in Worthington Avenue and a 12 -inch main in Centre Avenue. Existing sewer mains in the vicinity include an 8 -inch main in Worthington Avenue and a 21-inch main in Centre Avenue. It does not appear there are any service stubs into this site.
2. A water main loop will be required to service the site. Coordination with Water Utilities Engineering as design progresses is advised.
3. The water conservation standards for landscape and irrigation will apply. Information on these requirements can be found at: http://www.fcgov.com/standards
4. Development fees and water rights will be due at building permit.

Department: Traffic Operations
 Contact: Martina Wilkinson, 970-221-6887, mwilkinson@fcgov.com

1. The anticipated traffic volume from this development is right at the threshold for needing a Traffic Impact Study. It would only be a simple traffic memo. Please have your traffic engineer contact me to scope the study.
2. It's great that the access is off a local road. If a connection to Centre would need to be made, it would need to be opposite Research Blvd.
3. Will there be any trail connections along the ditches?

Department: Stormwater Engineering
 Contact: Shane Boyle, 970-221-6339, sboyle@fcgov.com

1. The design of this site must conform to the drainage basin design of the Spring Creek Master Drainage Plan as well the Fort Collins Stormwater Criteria Manual.
2. A drainage report, erosion control report, and construction plans are required and they must be prepared by a Professional Engineer registered in Colorado. The drainage report must address the four-step process for selecting structural BMPs. There is a final site inspection required when the project is complete and the maintenance is handed over to an HOA or another maintenance organization. The erosion control report requirements are in the Fort Collins Stormwater Manual, Section 1.3.3, Volume 3, Chapter 7 of the Fort Collins Amendments. If you need clarification concerning this section, please contact the Erosion Control Inspector, Jesse Schlam at 224-6015 or jschlam@fcgov.com.
3. Onsite detention is required for the runoff volume difference between the 100 -year developed inflow rate and the 2-year historic release rate. The outfall for the site is the storm sewer in Centre Avenue which is located east of the site. No developed site release into the adjacent ditches will be allowed.
4. Fifty percent of the site runoff is required to be treated using the standard water quality treatment as described in the Fort Collins Stormwater Manual, Volume 3-Best Management Practices (BMPs).
(http://www.fcgov.com/utilities/business/builders-and-developers/development-forms-guideli nes-regulations/stormwater-criteria) Extended detention is the usual method selected for water quality treatment; however the use of any of the BMPs is encouraged.
5. Low Impact Development (LID) requirements are required on all new or redeveloping property which includes sites required to be brought into compliance with the Land Use Code. These require a higher degree of water quality treatment with one of the two following options:
A. 50% of the newly added or modified impervious area must be treated by LID techniques and 25% of new paved areas must be pervious.
B. 75% of all newly added or modified impervious area must be treated by LID techniques. Standard operating procedures (SOPs) for all onsite drainage facilities will be included as part of the Development Agreement. More information and links can be found at: http://www.fcgov.com/utilities/what-we-do/stormwater/stormwater-quality/low-impact-develo pment
6. Per Colorado Revised Statute §37-92-602 (8) effective August 5, 2015, criteria regarding detention drain time will apply to this project. As part of the drainage design, the engineer will be required to show compliance with this statute using a standard spreadsheet (available on
request) that will need to be included in the drainage report. Upon completion of the project, the engineer will also be required to upload the approved spreadsheet onto the Statewide Compliance Portal. This will apply to any volume based stormwater storage, excluding bio-retention cells.
7. The 2016 city wide Stormwater development fee (PIF) is $\$ 8,217 /$ acre for new impervious area over 350 sq. ft. and there is a $\$ 1,045.00 /$ acre review fee. No fee is charged for existing impervious area. These fees are to be paid at the time each building permit is issued. Information on fees can be found at: http://www.fcgov.com/utilities/business/builders-and-developers/plant-investment-developme nt-fees or contact Jean Pakech at 221-6375 for questions on fees. There is also an erosion control escrow required before the Development Construction permit is issued. The amount of the escrow is determined by the design engineer, and is based on the site disturbance area, cost of the measures, or a minimum amount in accordance with the Fort Collins Stormwater Manual.

Department: Historical Preservation
 Contact: Maren Bzdek, 970-221-6206, mbzdek@fcgov.com

1. The property does not contain buildings 50 years old or older, and the proposed plans are unlikely to affect adjacent historic properties, if any.

Department: Fire Authority

Contact: Jim Lynxwiler, 970-416-2869, ilynxwiler@poudre-fire.org

1. FIRE ACCESS

Fire access is required to within 150 ft of all exterior portions of all buildings. Code language below.
> IFC 503.1.1: Approved fire Lanes shall be provided for every facility, building or portion of a building hereafter constructed or moved into or within the jurisdiction. The fire apparatus access road shall comply with the requirements of this section and shall extend to within 150 feet of all portions of the facility and all portions of the exterior walls of the first story of the building as measured by an approved route around the exterior of the building or facility. When any portion of the facility or any portion of an exterior wall of the first story of the building is located more than 150 feet from fire apparatus access, the fire code official is authorized to increase the dimension if the building is equipped throughout with an approved, automatic fire-sprinkler system.
2. DEAD-END FIRE LANES

Any dead end road over 660ft in length requires a secondary means of access. Code language added below.
> IFC 503.2.5 and Appendix D: Dead-end fire apparatus access roads cannot exceed 660 feet in length. Dead-end fire access roads in excess of 150 feet in length shall be provided with an approved area for turning around fire apparatus.
3. FIRE LANE SPECIFICATIONS

All private drives serving as a fire lane shall be built to fire Lane standards and be dedicated as an Emergency Access Easement. A fire lane plan shall be submitted for approval prior to installation. In addition to the design criteria already contained in relevant standards and policies, any new fire lane must meet the following general requirements:
> Shall be designated on the plat as an Emergency Access Easement.
$>$ Maintain the required 20 foot minimum unobstructed width \& 14 foot minimum overhead clearance.
> Be designed as a flat, hard, all-weather driving surface capable of supporting 40 tons.
> Dead-end fire access roads in excess of 150 feet in length shall be provided with an approved area for turning around fire apparatus.
$>$ The required turning radii of a fire apparatus access road shall be a minimum of 25 feet inside and 50 feet outside. Turning radii shall be detailed on submitted plans.
$>$ Be visible by painting and/or signage, and maintained unobstructed at all times.
> Additional access requirements exist for buildings greater than 30' in height. Refer to Appendix D of the 2012 IFC or contact PFA for details.
International Fire Code 503.2.3, 503.2.4, 503.2.5, 503.3, 503.4 and Appendix D; FCLUC 3.6.2(B)2006 and Local Amendments.
4. WATER SUPPLY

Adequate water supply has to be provided for all Residential developments. Code language below.
> IFC 508.1 and Appendix B: RESIDENTIAL REQUIREMENTS: Within the Urban Growth Area, hydrants to provide $1,000 \mathrm{gpm}$ at 20 psi residual pressure, spaced not further than 400 feet to the building, on 800 -foot centers thereafter.
5. RESIDENTIAL SPRINKLER SYSTEMS

Singe-Family attached residences are required to be sprinklered. Contact the building department for further details.

Department: Environmental Planning
 Contact: Kelly Kimple, 970-416-2401, kkimple@fcgov.com

1. An Ecological Characterization Study is required by Section 3.4.1 (D)(1) as the site is within 500 feet of multiple known natural habitats or features, including the Larimer County Canal \#2, the New Mercer Ditch, and wet meadow habitat. Please note that the buffer zone standards for these features of at least 50 ' and that the project will need to be designed in a way that is sensitive to these natural features. This may affect the site layout that is currently proposed.

The Ecological Characterization Study should include a delineation of natural features on the entire property and provide recommendations for protecting and enhancing the features that are on or adjacent to the site.

Please contact me if you would like to discuss the scope and requirements of the ECS further. The Ecological Characterization Study is due a minimum of 10 days prior to the PDP submittal.
2. Within the buffer zone, according to Article 3.4.1(E)(1)(g), the City has the ability to determine if the existing landscaping within the buffer zone is incompatible with the purposes of the buffer zone. Please ensure that your ECS discusses the existing vegetation and identifies potential restoration options. If it is determined to be insufficient, then restoration and mitigation measures will be required.
3. With respect to lighting, the City of Fort Collins Land Use Code, in Article 3.2.4(D)(6) requires that "natural areas and natural features shall be protected from light spillage from off site sources." Thus, lighting from the buildings or other site amenities shall not spill over to the buffer areas.
4. In regard to LED light fixtures, IDA (International Dark-Sky Association) recommends using lighting that has a color temperature of no more than 3000 degrees Kelvin in order to limit the amount of blue light in the night environment, as blue light brightens the night sky more than any other color of light. Both LED and metal halide fixtures contain large amounts of blue light in their spectrum, and exposure to blue light at night has been shown to harm human health and endanger wildlife. Please consider a warmer color temperature (3000 K or less) for your LED light fixtures. Please also consider fixtures with dimming capabilities so that light levels can be adjusted as needed.
5. With respect to landscaping and design, the City of Fort Collins Land Use Code, in Article 3.2.1 (E)(3), requires that you use low-water-use plants and grasses in your landscaping or re-landscaping and reduce bluegrass lawns as much as possible. Native and wildlife-friendly landscaping is encouraged as well.
6. The applicant should make note of Article 3.2.1(C) that requires developments to submit a landscape and tree protection plan, and if receiving water service from the City, an irrigation plan, that: "...(4) protects significant trees, natural systems, and habitat, and (5) enhances the pedestrian environment". Note that a significant tree is defined as a tree having DBH (Diameter at Breast Height) of six inches or more. If any of the trees within this site have a DBH of greater than six inches, a review of the trees shall be conducted with Tim Buchanan, City Forester (970-221-6361 or tbuchanan@fcgov.com) to determine the status of the existing trees and any mitigation requirements that could result from the proposed development.
7. Our city has an established identity as a forward-thinking community that cares about the quality of life it offers its citizens and has many sustainability programs and goals that may benefit your project. Of particular interest may be the:

1. Green Building Program: http://www.fcgov.com/enviro/green-building.php, contact Tony Raeker at 970-416-4238 or traeker@fcgov.com
2. Solar Energy:
http://www.fcgov.com/utilities/residential/renewables/solar-contractors-resources, contact Norm Weaver at 970-416-2312 or nweaver@fcgov.com
3. Urban Agriculture: http://www.fcgov.com/developmentreview/urbanagriculture.php
4. Nature in the City Strategic Plan: fcgov.com/planning/natureinthecity/?
key=advanceplanning/natureinthecity/, contact Justin Scharton at 970-221-6213 or jscharton@fcgov.com

Please consider the City's sustainability goals and ways for your development to engage with these efforts.

Department: Engineering Development Review

Contact: Katie Sexton, 970-221-6501, ksexton@fcgov.com

1. Larimer County Road Impact Fees and Street Oversizing Fees are due at the time of building permit. Please contact Matt Baker at 224-6108 if you have any questions.
2. The City's Transportation Development Review Fee (TDRF) is due at the time of submittal. For additional information on these fees, please see: http://www.fcgov.com/engineering/dev-review.php
3. Any damaged curb, gutter and sidewalk existing prior to construction, as well as streets, sidewalks, curbs and gutters, destroyed, damaged or removed due to construction of this project, shall be replaced or restored to City of Fort Collins standards at the Developer's expense prior to the acceptance of completed improvements and/or prior to the issuance of the first Certificate of Occupancy.
4. All public sidewalk, driveways and ramps existing or proposed adjacent or within the site need to meet ADA standards, if they currently do not, they will need to be reconstructed so that they do meet current ADA standards as a part of this project. The existing driveway will need to be evaluated to determine if the slopes and width will meet ADA requirements or if they need to be reconstructed so that they do.
5. Any public improvements must be designed and built in accordance with the Larimer County Urban Area Street Standards (LCUASS). They are available online at: http://www.larimer.org/engineering/GMARdStds/UrbanSt.htm
6. This project is responsible for dedicating any right-of-way and easements that are necessary or required by the City for this project. This shall including the standard utility easements that are to be provided behind the right-of-way (15 foot along an arterial and 9 foot along all other street classifications).
7. The street is currently labeled as a private drive; if this changes, and the development decides to make it a public street, please keep in mind the following: The road would need to be designed as the Connector Local cross section because it is a multi-family development which requires more width to accommodate on-street parking. The median should be removed because it is not part of the standard cross section. Elbows will most likely need to be added to the curves to meet LCUASS geometry standards. Ditch/ irrigation crossings of public streets are allowed provided that the crossing is perpendicular to the roadway, the pipe is sleeved per standards, and an encroachment permit is obtained. Except for the perpendicular crossings, ditch/ irrigation lines are not allowed within the public right of way.
8. Utility plans will be required and a Development Agreement will be recorded once the project is finalized.
9. A Development Construction Permit (DCP) may need to be obtained prior to starting any work on the site.
10. All fences, barriers, posts or other encroachments within the public right-of-way are only permitted upon approval of an encroachment permit. Applications for encroachment permits shall be made to Engineering Department for review and approval prior to installation. Encroachment items shall not be shown on the site plan as they may not be approved, need to be modified or moved, or if the permit is revoked then the site/ landscape plan is in non-compliance.
11. Any rain gardens within the right-of-way cannot be used to treat the development/ site storm runoff. We can look at the use of rain gardens to treat street flows - the design standards for these are still in development.
12. Bike parking required for the project cannot be placed within the right-of-way and if placed just behind the right-of-way need to be placed so that when bikes are parked they do not extend into the right-of-way.
13. In regards to construction of this site: The public right-of-way shall not be used for staging or storage of materials or equipment associated with the Development, nor shall it be used for parking by any contractors, subcontractors, or other personnel working for or hired by the Developer to construct the Development. The Developer will need to find a location(s) on private property to accommodate any necessary Staging and/or parking needs associated with the completion of the Development. Information on the location(s) of these areas will be required to be provided to the City as a part of the Development Construction Permit application.
14. Repayment for local street portions of adjacent streets may be due with building permit.

Department: Electric Engineering

Contact: Tyler Siegmund, 970-416-2772, tsiegmund@fcgov.com

1. Light and Power has electric facilities along the east side of Centre Ave that can be utilized to provide power to the development.
2. Electric capacity fees, development fees, building site charges and any system modification charges necessary to feed the site will apply to this development. Please visit the following website for an estimate of charges and fees:
http://www.fcgov.com/utilities/business/builders-and-developers/plant-investment-developme nt-fees
3. Light \& Power will need the following documentation to be submitted before design will begin and construction will start on the electric facilities to feed the development: AutoCAD files of the approved site plan, plat, landscape plans, and utility plans.
4. The location of the electric services will need to be coordinated with Light and Power Engineering. Please note that the residential units must be metered individually.
5. Please contact Light \& Power Engineering if you have any questions at 221-6700. Please reference our policies, development charge processes, and use our fee estimator at http://www.fcgov.com/utilities/business/builders-and-developers.

Planning Services

Contact: Clay Frickey, 970-224-6045, cfrickey@fcgov.com

1. Secondary uses can make up no more than 25% of the gross area of a development plan in the Employment zone distrct. Single-family attached units are considered a secondary use. This proposal will require a modification to this standard.
2. The minimum residential density allowed in the zone district is 7 dwelling units per acre. This proposal shows a density of 4.56 dwelling units per acre. This will require a modification request.
3. How large is the proposed park? For development sites with greater than 2 acres of gross area, a minimum 10,000 sq. ft. park is required. Please show the size of the park on the site plan. If it is less than 10,000 sq. ft., this will require a modification request.
4. How will parking be provided on the site? Below are the minimum parking requirements based on the number of bedrooms per unit:

One bedroom or less: 1.5 parking spaces
Two bedroom: 1.75 parking spaces
Three bedroom: 2 parking spaces
Four bedroom or more: 3 parking spaces
5. This proposal will require a landscape plan. Consider creating a parkway around the private drive with street trees to create an urban tree canopy.
6. Will you be replatting as part of this project? On a related note, what will be happening with the remainer of the parcel to the east? The site plan shown would preclude any sort of connection to potential development on the eastern portion of the parcel.
7. How tall are the proposed buildings? The maximum building height in the E zone district is 4 stories.
8. The proposed development project is subject to a Type 2 (Planning and Zoning Board) review and public hearing. The applicant for this development request is required to hold a neighborhood information meeting prior to formal submittal of the proposal. Neighborhood meetings offer an informal way to get feedback from your surrounding neighbors and discover any potential hiccups prior to the formal hearing. Please contact me, at 221-6750, to assist you in setting a date, time, and location. I and possibly other City staff, would be present to facilitate the meeting.
9. Please see the Development Review Guide at www.fcgov.com/drg. This online guide features a color coded flowchart with comprehensive, easy to read information on each step in the process. This guide includes links to just about every resource you need during development review.
10. This development proposal will be subject to all applicable standards of the Fort Collins Land Use Code (LUC), including Article 3 General Development Standards. The entire LUC is available for your review on the web at http://www.colocode.com/ftcollins/landuse/begin.htm.
11. If this proposal is unable to satisfy any of the requirements set forth in the LUC, a Modification of Standard Request will need to be submitted with your formal development proposal.
Please see Section 2.8.2 of the LUC for more information on criteria to apply for a Modification of Standard.
12. Please see the Submittal Requirements and Checklist at: http://www.fcgov.com/developmentreview/applications.php.
13. The request will be subject to the Development Review Fee Schedule that is available in the Community Development and Neighborhood Services office. The fees are due at the time of submittal of the required documents for the appropriate development review process by City staff and affected outside reviewing agencies. Also, the required Transportation Development Review Fee must be paid at time of submittal.
14. When you are ready to submit your formal plans, please make an appointment with Community Development and Neighborhood Services at (970)221-6750.

[^0]: Description of Proposal (attach additional sheets if necessary)
 Master Plan the three parcels to develop in a cohesive manner, with a central shared private drive connecting the intersection of Venus Ave and Crestridge St with a right in and right out to S. College Ave north of the property. Perform a subdivision plat for parcels 01 \& 03 to create an official property line between the two parcels.

[^1]: Noles
 \sim : Volume exceeds capacity $\$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined *: All major volume in platoon

[^2]: N :
 \sim : Volume exceeds capacity $\quad \$$: Delay exceeds $300 \mathrm{~s} \quad \boldsymbol{+}$ Computation Not Defined \quad : All major volume in platoon

[^3]: Vineyard-Goldelm ODP/PDP 2/21/2016 PM 2020 Total Traffic ELB ENGINEERING, LLC

[^4]: Vineyard-Goldelm ODP/PDP 2/21/2016 AM 2036 Total Traffic ELB ENGINEERING, LLC

[^5]: These map products and all underying dala are developed for use by the City of fort Coinns for its internal purposes only, and were nol designed orinended for general use by members of the public. The City makes no representation or warranty as to its accuracy, timeliness, or completeness, and in particular, its accuracy in labeling or displaying dimensions, contours,
 property boundaries, or placement of location of any map features thereon. THE CITY OF FORT COLLINS MAKES NO WARRANTY OF MERCHANTABIITY OR WARRANTY FOR FITNESS OF USE FOR PARTICULAR PURPOSE, EXPRESSED OR IMPLIED, WITH RESPECT TO THESE MAP PRODUCTS OR THE UNDERLYING DATA. Any users of these map

