Preliminary Drainage Report

For

Stodgy Brewing Co., LLC
1802 and 1804 Laporte Avenue, Fort Collins, Colorado

AGPROfessionals
$305067^{\text {th }}$ Avenue, Suite 200
Greeley, CO 80634
(970) 535-9318

10/3/2019

October 3, 2019

Mr. Dan Mogen
City of Fort Collins
281 North College Avenue
Fort Collins, Co 80521
RE: Stodgy Brewing Co, LLC. Preliminary Drainage Report
Dear Mr. Mogen,
Please accept the submittal of the Preliminary Drainage Report for Stodgy Brewing Co, LLC. The preliminary drainage report is to accompany the submittal of the Project Development Plan (PDP).

The Preliminary Drainage report was prepared in accordance with the City of Fort Collins Stormwater Criteria Manual (FCSCM) and the Urban Drainage and Flood Control District (UDFCD) Urban Storm Drainage Criteria Manual. We understand that the City of Fort Collins does not and will not assume liability for drainage facilities designed by others.

If you have any questions, please contact us at (970) 535-9318 or electronically at vlickley@agpros.com.

Sincerely,

Chad TeVelde, PE
AGPROfessionals

ENGINEERING, PLANNING, CONSULTING \& REAL ESTATE

Table of Contents

Certifications 3
Introduction 4

1. Location 4
2. Description of Property 4
Drainage Basin and Sub-Basins 5
3. Major Basin Description 5
4. Sub-Basin Description 5
Drainage Design Criteria 7
5. Development Criteria 7
6. Four Step Process 7
7. Hydrological Criteria 8
8. Hydraulic Criteria 9
Drainage Facility Design 9
9. General Concept 9
10. Specific Details 9
Erosion Control 10
11. Compliance with Erosion Control Criteria 10
Conclusions 10
12. Compliance with Fort Collins Stormwater Criteria Manual 10
13. Drainage Concept 10
List of References 11
Appendices

Certifications

I hereby attest that this report for the preliminary drainage design for Stodgy Brewing Co., LLC was prepared by me or under my direct supervision, in accordance with the provisions of the Fort Collins Stormwater Criteria Manual and Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual. I understand that the City of Fort Collins does not and will not assume liability for drainage facilities designed by others.

Chad TeVelde, P.E. AGPROfessionals

Valene Lickley, EIT AGPROfessionals

Introduction

1. Location

The proposed site is in part of the Southeast $1 / 4$ of the Northwest $1 / 4$ Section 10, Township 7 North, Range 69 West, of the 6th P.M., Larimer County, CO. This site is located on the north side of Laporte Avenue in Fort Collins, Colorado and directly across from Frey Avenue. Frey Subdivision and City Park North Subdivision are located directly south of the proposed development. Larimer County Canal Number 2 borders the east side of the proposed development. Salud Health Center borders the north and west side of the proposed site. A vicinity map is shown in Appendix A.

2. Description of Property

The applicant is proposing the development of 1802 and 1804 Laporte Avenue into a small brewery which will include the brewery, taproom, patio seating, on-site customer parking, food truck parking, landscaping, and employee parking. The total property acreage is 1.19 . The proposed site is currently zoned Limited Commercial (C-L).

The existing site consists of a single-family residence located at 1804 Laporte Avenue, one multi-use building, with occupancy of F-2, B and A-2 at 1802 Laporte Avenue, and a commercial building, occupancy B at 1800 Laporte Avenue (which is located on the 1802 Laporte Ave Parcel). The single-family residence currently located at 1804 Laporte Ave. is going to be torn down and used for customer parking. The other buildings will be kept and renovated. The multi-use building will be renovated and used for the brewery and taproom. The commercial building will remain on-site for brewery office use. The two buildings will be connected. The existing asphalt at the customer parking will remain and trimmed to match the proposed site plan.

Currently there are no stormwater features on-site.
There is one main soil type: Nunn clay loam with 1 to 3 percent slope (see USDA-NRCS Custom Soil Resource Report in Appendix A).

Larimer No. 2 irrigation canal borders the property on the east.

Drainage Basin and Sub-Basins

1. Major Basin Description

The proposed site is in the West Vine Basin Master Drainage Plan. The proposed site is currently not located within a proposed improvement or flood control and water quality area. West Vine Basin Plan with the project site labeled is shown in Appendix A.

The site has slopes ranging from approximately zero to five percent predominately towards the south. The majority of the stormwater appears to flow south. Due to the dense vegetation, runoff is dissipated either by interception from the large trees and/or a velocity reduction in the sheet flow. A topographic map was downloaded from the United States Geological Survey (USGS) website and is shown in Appendix A. The owners are not aware of any previous drainage issues and there was no visible sign of any previous drainage issues on site.

A Federal Emergency Management Administration (FEMA) map of the project area is included in Appendix A. The property is located on panel 08123C1575E and is not currently located within a 100-year floodplain.

No off-site flows are anticipated. Off-site flows from the east are intercepted by the Larimer No. 2 irrigation canal. Off-site flows from the south are intercepted and diverted by Laporte Avenue. Topography to the north is flat and off-site flows from the north appear to flow east to northeast toward the Larimer No. 2 irrigation canal. Off-site flows from the west flow south and bypass the site.

2. Sub-Basin Description

There are five sub-basin areas, Sub-basin A, Sub-basin B, Sub-basin C, Sub-basin D and Sub-basin E, that were considered for the drainage report. Sub-basin A, is the proposed customer parking, Sub-basin B is the proposed fire lane, handicap parking and trash enclosure, Sub-basin C is the front deck area, employee parking and front lawn/landscaping, Sub-basin D is the majority of the existing buildings and the northeast corner of the parcel that is densely vegetated, Sub-basin E is the sidewalk, parkway, and entrances. See the Drainage Plan for the Sub-basin delineation.

The customer parking area will include TrueGRID permeable pavers. The TrueGRID pavers are specified as 100% permeable on the surface and will include an underdrain for treatment. For overall pervious calculations, the TrueGRID was assumed to be 40% impervious. The permeable pavers will replace the existing residence, pavement and gravel located at the 1804 Laporte Ave address.

The Existing Features area includes the proposed brewery, taproom, commercial buildings, surrounding landscaping, employee parking, and patio seating. No additional development is being proposed in this area and therefore, the percent imperviousness will not change for this area.

The small area in the northeast corner of the parcel appears to ultimately flow to the canal. No development is proposed in this area and it consists only of vegetation. The vegetation includes large trees (cottonwoods and elms) and lilac bushes.

Sub-basin E sheet flows towards south to the curb and gutter on Laporte Ave.

Drainage Design Criteria

1. Development Criteria

The proposed site runoff was evaluated using the criteria set forth in the Fort Collins Stormwater Criteria Manual (FCSCM) and Urban Drainage and Flood Control District (UDFCD) Criteria Manual Volumes 1, 2, and 3.

2. Four Step Process

The Four Step Process recommended by UDFCD and City of Fort Collins was utilized to reduce runoff volumes and minimize impacts on receiving waters from smaller, more frequently occurring events.

Step 1. Employ Runoff Reduction Practices

To reduce runoff peaks, volumes, and pollutant loads, Stodgy Brewing is proposing to implement the following:

- TrueGRID Pro Plus Pavers (TrueGRID Pavers) are proposed in the customer parking area. The TrueGRID Pro Plus Pavers are 100% permeable and will be gravel filled. The TrueGRID Paver System will filter stormwater through the subbase. An underdrain will be installed and direct flows to the curb and gutter of Laporte Avenue. Specifications are in Appendix B.
- No additional permeable areas are being proposed. The existing site (excluding the proposed parking area that will use the TrueGRID Plus Pavers) will remain the same which includes vegetated patio space and landscaping. The patio space and landscaping areas reduce run-off and promote infiltration. The historical drainage pattern will be maintained.

Step 2. Implement BMPs That Provide a WQCV with Slow Release

The TrueGRID pavers will include an 8 " subgrade with a 4 " underdrain for treatment. The 8 " subgrade was designed to hold the major storm event that falls on the parking lot. The water can be temporarily detained prior to draining either through the underdrain or through infiltration. The subgrade acts as a filter for the precipitation falling directly on the surface of the parking lot.

The trash enclosure, concrete apron and small area of proposed asphalt south of the concrete apron will be routed through the TrueGRID pavers system.

The site has existing and established vegetation around the site. The proposed development does not disturb any of the established vegetation on the eastern border, maintains the landscaped areas in front of the proposed brewery, and provides landscaped areas in the proposed customer parking area.

Step 3. Stabilize Stream

Larimer No. 2 Irrigation Canal borders the proposed site. Minimal run-off historically flows that direction. Vegetation bordering the canal includes large trees (cottonwoods and elms) and lilac bushes. This established vegetation will continue to promote stabilized
banks on the canal and will be maintained and kept throughout the development process. This area is within the Natural Habitat Buffer Zone.

Step 4. Implement Site Specific and Other Source Control BMPs

Site specific and other source control BMPs that will be implemented are:

- Trash enclosure is placed adjacent to the parking lot and is fully enclosed. It is not directly next to storm drains or surface water.
- Patio space is going to be maintained with the existing landscaping and will filter run-off from the paved area and roofs.

3. Hydrological Criteria

From FCSCM Chapter 5, Hydrology Standards, Table 3.4-1. the IDF (Intensity Duration Frequency) Table was used to determine the 2 Year, 10 Year and 100 Year Peak Flow Rate. The Table is in Appendix A.

Percentage of imperviousness was calculated for the existing site conditions and the proposed site using the recommended values from Table 4.1-3. Surface Type - Percent Impervious (FCSCM Chapter 5 Hydrology Standards). The overall percentage of imperviousness for the existing site is approximately 50 percent and for the proposed site is approximately 50 percent (see Percentage of Imperviousness Calculation in Appendix A).

The project size and sub-basins are less than 5 acres, therefore the runoff calculations were computed using the Rational Method. Table 1 summarizes the existing conditions and proposed development flowrates for the sub-basins. Calculations are in Appendix A. The total site runoff was calculated by adding the run-off of the sub-basins. Since the majority of the sub-basins are independent of each other and time of concentrations are close, the sum of the run-off of each basin was used.

Table 1: Peak Runoff Flowrates

Peak Runoff	\% Imperviousnes \mathbf{s}	2 Year Peak Flowrate (cfs)	10 Year Peak Flowrate (cfs)	100 Year Peak Flowrate (cfs)
Existing Conditions -Total	50%			
Proposed-Total	50%			
DB-A	30%	0.18	0.31	0.86
DB-B	72%	0.35	0.60	1.54
DB-C	15%	0.18	0.31	0.84
DB-D	47%	0.51	0.88	2.24
DB-E	60%	0.28	0.48	1.22
Total Site Runoff		1.50	2.58	6.70

cfs $=$ cubic feet per second

4. Hydraulic Criteria

The proposed site is not increasing the imperviousness. The proposed development is removing asphalt, gravel, and an existing building, and installing TrueGRID permeable pavers. Since the percentage of imperviousness is not increasing by 1000 square feet or more, a detention pond is not proposed as stated in Chapter 1: Drainage Principles \& Policies, 2.3.2 Detention Basin of the Fort Collins Stormwater Criteria Manual (FCSCM). Best Management Practices (BMPs) are proposed which include TrueGRID Permeable Pavers system.

TrueGRID Pavers are proposed for the customer parking lot. The TrueGRID ProPlus Pavers are designed for commercial parking lots. The TrueGRID pavers are specified as 100% permeable on the surface and will include an underdrain for treatment. For overall pervious calculations, the TrueGRID was assumed to be 40% impervious. The Manufacturer's Product Specification Sheet is in Appendix B. 8" of subgrade is proposed under the TrueGRID Pavers to detain the major storm volume falling on the proposed parking lot prior to infiltrating into the native soils or draining through the underdrain. The underdrain is proposed on the east edge of the TrueGRID pavers. The underdrain will drain south toward the southern property boundary. There will be an inspection port at the end of the underdrain. The underdrain will be directed to a 4 " PVC pipe and flow east under the main entrance. It will flow to a drainage swale for a short distance and then be directed to a sidewalk chase to the proposed curb and gutter on Laporte Avenue.

Drainage Facility Design

1. General Concept

The proposed brewery and site development do not increase the percentage of imperviousness. The proposed customer parking area is TrueGRID Permeable Pavers. The TrueGRID Pavers System treats stormwater falling on the customer parking area, the trash enclosure area and small amount of proposed asphalt.

The site does not alter historic flows. A general drainage plan, drainage and erosion control plan, and drainage and erosion control details are shown in Appendix C.

2. Specific Details

Installation and maintenance shall be in accordance with the manufacture's technical specifications in Appendix B.

Erosion Control

1. Compliance with Erosion Control Criteria

A comprehensive Erosion and Sediment Control Plan will be submitted with the Final Plan (FP). The Erosion and Sediment Control Plan will be consistent with the Fort Collins and State of Colorado's Stormwater Criteria Manual. Preliminary erosion control plans and details can be seen in Appendix C.

Conclusions

1. Compliance with Fort Collins Stormwater Criteria Manual

The drainage design of Stodgy Brewing Company on Laporte Avenue is consistent with the Fort Collins Stormwater Criteria Manual, the West Vine Basin Plan, and all state and federal regulations governing stormwater discharge. The proposed site does not have a mapped 100-year Floodplain.

2. Drainage Concept

Historical flow patterns and run-off amounts should be maintained in such a manner that should reasonably preserve the natural character of the area and prevent property damage of the type generally attributed to run-off rate and velocity increases, diversions, concentration and/or unplanned ponding of storm run-off for the 100-year storm event. The drainage design included in this report should be effective in controlling damage from the design storm runoff by detaining the 100-year, 1-hour storm event for the proposed customer parking area and releasing it through infiltration. The remainder of the site has not increased the percentage of imperviousness, and historical flow patterns to the Larimer No. 2 Irrigation Canal will be maintained.

The Low Impact Development (LID) Requirements are met through the TrueGRID Paver System. 80% of the stormwater created by the proposed development is treated. See Appendix D with the LID Exhibit and Table 2 below. The customer parking area within the proposed utility easement was removed from the treated area (net treated area). Sub-basin E, development proposed in the right of way, sheet flow north to south and away from the project site. The improvements and modification to Laporte Avenue are designed to direct stormwater east through the curb and gutter. It is not feasible to treat the stormwater generated from this area. This area is labeled as the R.O.W. Development on the LID Exhibit.
Table 2: LID Treatment Summary Table

Areas	Total Sq. Ft.
Total Developed Treated Area	6,251
Total Developed Untreated Area	856
Total On-Site Development	7,107
Developed Area in Utility Easement	937
Net Treated Area	5,695
\% On-Site Treatment	80%
R.O.W. Development	11,002

List of References

City of Fort Collins. "West Vine Basin." Selected Plan-Water Quality \& Habitat Improvements. Icon Engineering, Inc. Web. 8 August 2019. <https://www.fcgov.com/utilities/img/site_specific/uploads/West_Vine.pdf?1343238085 $>$.

City of Fort Collins. "Fort Collins Stormwater Criteria Manual." December 2018. Web. 31 July, 2019. < https://www.fcgov.com/utilities//img/site_specific/uploads/fcscm-cover-page-contents-and-preface.pdf?1549566343>.

Federal Emergency Management Agency. "FEMA Flood Map Service Center." FEMA Flood Map Service Center. FEMA, 2 May 2012. Web. 31 July, 2019. https://msc.fema.gov/portal.

Larimer County IT, Enterprise GIS. "Land Information." Search by Map. Larimer County. Web. 12 August 2019. <https://maps1.larimer.org/gvh/?Viewer=LIL\&run=Theme\&theme=Land\ Informatio n\&run=Parcel\&parcel=>

United States Department of Agriculture - Natural Resources Conservation Service. "Web Soil Survey." Web Soil Survey. USDA - NRCS, 2006. Web. 31 July, 2019 http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx.

United States Geological Survey. "Maps." Overview - Maps, United States Geological Survey. USGS, 2016. Web. 12 August 2019. <www.usgs.gov/products/maps/topomaps>.

Urban Drainage and Flood Control District. Peak Runoff Prediction by the Rational Method. Computer software. Software. Vers. 2.00. http://udfcd.org/software.

Urban Drainage and Flood Control District. "Urban Storm Drainage Criteria Manual Volume 1." USDCM: Volume 1 Management, Hydrology and Hydraulics. UDFCD, Aug. 2018. Web. 12 August 2019. http://udfcd.org/volume-one.

Urban Drainage and Flood Control District. "Urban Storm Drainage Criteria Manual Volumes 2." USDCM: Volume 2 Structures, Storage and Recreation. UDFCD, September 2017. Web. 12 August 2019. http://udfcd.org/volume-two.

Urban Drainage and Flood Control District. "Urban Storm Drainage Criteria Manual Volumes 3." USDCM: Volume 3 Stormwater Quality. UDFCD, April 2018. Web. 29 Nov. 2018. http://udfcd.org/volume-three.

Appendices

A. Hydrologic Computations
a. Vicinity Map
b. USDA-NRCS Soil Report
c. West Vine Basin Plan
d. USGS Topographic Map
e. FEMA FIRMette Map
f. FCSCM IDF Table
g. Percentage of Imperviousness
h. UD Rational Runoff Calculations
B. Hydraulic Computations
a. TrueGRID Permeable Paver Product Specification Sheet
C. 24×36 Maps
a. General Drainage Plan
b. Drainage and Erosion Control Plan
c. Drainage and Erosion Control Details
D. LID Treatment Exhibit

APPENDIX A

Hydrologic Computations

Vincity Map

| 0.1 | Scale |
| :--- | :--- | :--- |
| Date Prepared: $8 / 12 / 2019$ 9:54:20 AM | |

United States Department of Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for

 Larimer County Area, ColoradoStodgy Brewing Co

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface 2
How Soil Surveys Are Made 5
Soil Map 8
Soil Map 9
Legend 10
Map Unit Legend 11
Map Unit Descriptions. 11
Larimer County Area, Colorado 13
35-Fort Collins loam, 0 to 3 percent slopes 13
74 -Nunn clay loam, 1 to 3 percent slopes 14
References 16

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.
Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.
Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.
After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)	
\square	Area of Interest (AOI)
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features
(0) Blowout

B Borrow Pit
粠 Clay Spot
\checkmark Closed Depression
Gravel Pit
\therefore Gravelly Spot
(4) Landfill
A. Lava Flow
A. Marsh or swamp
\& Mine or Quarry
(-) Miscellaneous Water

- Perennial Water
- Rock Outcrop
+ Saline Spot
\therefore Sandy Spot
- Severely Eroded Spot
- Sinkhole

3) Slide or Slip
(6) Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Larimer County Area, Colorado Survey Area Data: Version 13, Sep 10, 2018

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Aug 11, 2018-Aug 12, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol		Map Unit Name	Acres in AOI
35	Fort Collins loam, 0 to 3 percent slopes	0.6	Percent of AOI
74	Nunn clay loam, 1 to 3 percent slopes	$\mathbf{1 . 5}$	
Totals for Area of Interest		$\mathbf{2 . 1}$	60.7%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,
onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Larimer County Area, Colorado

35-Fort Collins loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2tInc
Elevation: 4,020 to 6,730 feet
Mean annual precipitation: 14 to 16 inches
Mean annual air temperature: 46 to 48 degrees F
Frost-free period: 143 to 154 days
Farmland classification: Prime farmland if irrigated

Map Unit Composition

Fort collins and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Fort Collins

Setting

Landform: Interfluves
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Pleistocene or older alluvium derived from igneous, metamorphic and sedimentary rock and/or eolian deposits

Typical profile

Ap-0 to 4 inches: loam
Bt1-4 to 9 inches: clay loam
Bt2 - 9 to 16 inches: clay loam
Bk1-16 to 29 inches: loam
Bk2 - 29 to 80 inches: loam
Properties and qualities
Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 12 percent
Salinity, maximum in profile: Nonsaline (0.1 to $1.0 \mathrm{mmhos} / \mathrm{cm}$)
Sodium adsorption ratio, maximum in profile: 0.5
Available water storage in profile: High (about 9.1 inches)
Interpretive groups
Land capability classification (irrigated): 2e
Land capability classification (nonirrigated): 4c
Hydrologic Soil Group: C
Ecological site: Loamy Plains (R067BY002CO)
Hydric soil rating: No

Minor Components

Nunn

Percent of map unit: 10 percent
Landform: Terraces
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: Loamy Plains (R067BY002CO)
Hydric soil rating: No
Vona
Percent of map unit: 5 percent
Landform: Interfluves
Landform position (two-dimensional): Backslope, footslope
Landform position (three-dimensional): Side slope, base slope
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: Sandy Plains (R067BY024CO)
Hydric soil rating: No

74-Nunn clay loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2tlpl
Elevation: 3,900 to 5,840 feet
Mean annual precipitation: 13 to 17 inches
Mean annual air temperature: 50 to 54 degrees F
Frost-free period: 135 to 160 days
Farmland classification: Prime farmland if irrigated

Map Unit Composition

Nunn and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Nunn

Setting

Landform: Terraces
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Pleistocene aged alluvium and/or eolian deposits

Typical profile

Ap-0 to 9 inches: clay loam
$B t-9$ to 13 inches: clay loam
Btk - 13 to 25 inches: clay loam
Bk1-25 to 38 inches: clay loam

Bk2-38 to 80 inches: clay loam

Properties and qualities

Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to $0.20 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 7 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.1 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 0.5
Available water storage in profile: High (about 9.9 inches)

Interpretive groups

Land capability classification (irrigated): 2e
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: C
Ecological site: Clayey Plains (R067BY042CO)
Hydric soil rating: No

Minor Components

Heldt

Percent of map unit: 10 percent
Landform: Terraces
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: Clayey Plains (R067BY042CO)
Hydric soil rating: No

Satanta

Percent of map unit: 5 percent
Landform: Terraces
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: Loamy Plains (R067BY002CO)
Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http:// www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://
www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242
United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624
United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT
\(\left.$$
\begin{array}{l|l|l} & & \begin{array}{l}\text { Without Base Flood Elevation (BFE) } \\
\text { Zone A, V, A99 }\end{array}
$$

With BFE or Depth Zone AE, AO, AH, VE, AR

SPECIAL FLOOD\end{array}\right]\)| Regulatory Floodway |
| :--- |

B- $-\frac{20.2}{17.5}$ Cross Sections with 1\% Annual Chance 17.5 Water Surface Elevation (8)- - - Coastal Transect $\ldots{ }^{117} \times m$ Base Flood Elevation Line (BFE) Limit of Study
Lurisdiction Boundary

- Jurisdiction Boundary

OTHER FEATURES \qquad —— Profile Baseline

Digital Data Available

No Digital Data Available

MAP PANELS Unmapped an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 7/31/2019 at 3:39:59 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, lood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

Table 3.4-1. IDF Table for Rational Method

Duration (min)	Intensity 2-year (in/hr)	Intensity 10-year (in/hr)	Intensity 100-year (in/hr)
5	2.85	4.87	9.95
6	2.67	4.56	9.31
7	2.52	4.31	8.80
8	2.40	4.10	8.38
9	2.30	3.93	8.03
10	2.21	3.78	7.72
11	2.13	3.63	7.42
12	2.05	3.50	7.16
13	1.98	3.39	6.92
14	1.92	3.29	6.71
15	1.87	3.19	6.52
16	1.81	3.08	6.30
17	1.75	2.99	6.10
18	1.70	2.90	5.92
19	1.65	2.82	5.75
20	1.61	2.74	5.60
21	1.56	2.67	5.46
22	1.53	2.61	5.32
23	1.49	2.55	5.20
24	1.46	2.49	5.09
25	1.43	2.44	4.98
26	1.4	2.39	4.87
27	1.37	2.34	4.78
28	1.34	2.29	4.69
29	1.32	2.25	4.60
30	1.30	2.21	4.52
31	1.27	2.16	4.42
32	1.24	2.12	4.33
33	1.22	2.08	4.24
34	1.19	2.04	4.16
35	1.17	2.00	4.08
36	1.15	1.96	4.01
37	1.16	1.93	3.93
38	1.11	1.89	3.87

Duration (min)	Intensity 2-year (in/hr)	Intensity 10-year (in/hr)	Intensity 100-year (in/hr)
39	1.09	1.86	3.8
40	1.07	1.83	3.74
41	1.05	1.80	3.68
42	1.04	1.77	3.62
43	1.02	1.74	3.56
44	1.01	1.72	3.51
45	0.99	1.69	3.46
46	0.98	1.67	3.41
47	0.96	1.64	3.36
48	0.95	1.62	3.31
49	0.94	1.6	3.27
50	0.92	1.58	3.23
51	0.91	1.56	3.18
52	0.9	1.54	3.14
53	0.89	1.52	3.10
54	0.88	1.50	3.07
55	0.87	1.48	3.03
56	0.86	1.47	2.99
57	0.85	1.45	2.96
58	0.84	1.43	2.92
59	0.83	1.42	2.89
60	0.82	1.4	2.86
65	0.78	1.32	2.71
70	0.73	1.25	2.59
75	0.70	1.19	2.48
80	0.66	1.14	2.38
85	0.64	1.09	2.29
90	0.61	1.05	2.21
95	0.58	1.01	2.13
100	0.56	0.97	2.06
105	0.54	0.94	2.00
110	0.52	0.91	1.94
115	0.51	0.88	1.88
120	0.49	0.86	1.84

| | Development \%1 Actual Design | $\mathbf{3 0 \%}$ |
| :--- | :--- | :---: | | | |
| :--- | :---: |
| | Composite Runoff Coefficient |
| | 2-year Composite Runoff Coefficient (Cf=1.00) |
| | 10-year Composite Runoff Coefficient (Cf=1.00) |
| | 100-year Composite Runoff Coefficient (Cf=1.25) |
| $\mathbf{0 . 4 3}$ | |

Overland Slope (percent)	1.9
Overland Length (ft)	72
Channelized Roughness Coefficient (manning's n)	0.15
Hydraulic Radius (feet)	0
Longitudinal Slope (feet/feet)	0
Length of channel (feet)	0
Channelized Velocity (ft/sec)	0.00

		2-year	10-year	100-year
	Time of Concentration (Tc=Ti+Tt)	8.55	8.55	7.16
	Overland Flow Time of Concentration (minutes)	8.54	8.54	7.16
	Channelized Flow Time of Concentration (minutes)	0.00	0.00	0.00
	Maximum Tc Allowed (L/180 +10)	10.40	10.40	10.40
	Total Time of Concentration*	$\mathbf{8 . 5 5}$	$\mathbf{8 . 5 5}$	$\mathbf{7 . 1 6}$
	*If Tc is less than 5 minutes, Tc is equal to 5 minutes			
	Intensity (in/hr) Table 3.4-1	$\mathbf{2 . 3 0}$	$\mathbf{3 . 9 3}$	$\mathbf{8 . 8 0}$

Flow Rate (cfs)	0.18	0.31	0.86
$\mathrm{Q}=\operatorname{ciA}$			

3050 67th Avenue, Suite 200
Greeley, CO 80634
Telephone (970) 535-9318
www.agpros.com
= User Entry
Solving for the Percent Impervious (1):

Description per UDFCD Table 6-3	\% Impervious	Runoff Coefficient	Total SqFt	Acres Impervious	Coefficient x Area (SqFt)	
Roofs	90\%	0.95	2,104	0.04	1999	
Asphalt, Concrete	100\%	0.95	3,113	0.07	2957	
Lawns, Clayey Soil, Avg Slope 2-7\%	2\%	0.25	1,753	0.00	438	
Gravel/Pavers	40\%	0.50	0	0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
			6,970	0.12	5394	
	Square Feet	Acres				
Total Impervious Acres	5,042	0.12				
Total Development Acres	6,970	0.16				

		Development \%/ Actual Design
Composite Runoff Coefficient $\mathbf{0 . 7 7}$ 2-year Composite Runoff Coefficient (Cf=1.00) $\mathbf{0 . 7 7}$ 10-year Composite Runoff Coefficient (Cf=1.00) $\mathbf{0 . 7 7}$ 100 -year Composite Runoff Coefficient (Cf=1.25) $\mathbf{0 . 9 7}$		

Overland Slope (percent)	2.8
Overland Length (ft)	134
Channelized Roughness Coefficient (manning's n)	0.15
Hydraulic Radius (feet)	0
Longitudinal Slope (feet/feet)	0
Length of channel (feet)	0
Channelized Velocity (ft/sec)	0.00

		2-year	10-year	100-year
	Time of Concentration (Tc=Ti+Tt)	5.01	5.01	2.04
	Overland Flow Time of Concentration (minutes)	5.01	5.01	2.04
	Channelized Flow Time of Concentration (minutes)	0.00	0.00	0.00
	Maximum Tc Allowed (L/180 +10)	10.74	10.74	10.74
	Total Time of Concentration*	$\mathbf{5 . 0 1}$	$\mathbf{5 . 0 1}$	$\mathbf{5 . 0 0}$
	*If Tc is less than 5 minutes, Tc is equal to 5 minutes			
	Intensity (in/hr) Table 3.4-1	$\mathbf{2 . 8 5}$	$\mathbf{4 . 8 7}$	$\mathbf{9 . 9 5}$

	Flow Rate (cfs)	0.35	0.60

Q=ciA

3050 67th Avenue, Suite 200
Greeley, CO 80634
Telephone (970) 535-9318
Project Number \qquad
2769-02
Date: \qquad
Designed By: AGPROfessionals
Checked By: CTV
Sheet: \qquad of \qquad Subject: DB-C (Proposed)
www.agpros.com
$=$ User Entry
Solving for the Percent Impervious (I):

Description per UDFCD Table 6-3	\% Impervious	Runoff Coefficient	Total SqFt	Acres Impervious	Coefficient x Area (SqFt)	
Roofs	90\%	0.95	600	0.01	570	
Asphalt, Concrete	100\%	0.95	45	0.00	43	
Lawns, Clayey Soil, Avg Slope 2-7\%	2\%	0.25	6,884	0.00	1721	
Gravel/Pavers	40\%	0.50	1,619	0.01	810	
Ditch	0\%	0.00	0	0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
None	0\%	0.00		0.00	0	
			9,148	0.03	3143	
	Square Feet	Acres				
Total Impervious Acres	1,370	0.03				
Total Development Acres	9,148	0.21				

| | | Development \%l Actual Design |
| :--- | :--- | :---: | | | |
| :--- | :--- |
| | Composite Runoff Coefficient |
| | 2-year Composite Runoff Coefficient (Cf=1.00) |
| | 10-year Composite Runoff Coefficient (Cf=1.00) |
| | 100 -year Composite Runoff Coefficient (Cf=1.25) |

Overland Slope (percent)	7.7
Overland Length (ft)	95
Channelized Roughness Coefficient (manning's n)	0.15
Hydraulic Radius (feet)	0
Longitudinal Slope (feet/feet)	0
Length of channel (feet)	0
Channelized Velocity (ft/sec)	0.00

		2-year	10-year	100-year
	Time of Concentration (Tc=Ti+Tt)	6.99	6.99	6.19
	Overland Flow Time of Concentration (minutes)	6.98	6.98	6.19
	Channelized Flow Time of Concentration (minutes)	0.00	0.00	0.00
	Maximum Tc Allowed (L/180 +10)	10.53	10.53	10.53
	Total Time of Concentration*	6.99	$\mathbf{6 . 9 9}$	$\mathbf{6 . 1 9}$
	*If Tc is less than 5 minutes, Tc is equal to 5 minutes			
	Intensity (in/hr) Table 3.4-1	$\mathbf{2 . 5 2}$	$\mathbf{4 . 3 1}$	$\mathbf{9 . 3 1}$

	Flow Rate (cfs)	0.18	0.31	0.84

$\mathrm{Q}=\mathrm{ci} \mathrm{A}$

| | Development \%1 Actual Design | $\mathbf{4 7 \%}$ |
| :--- | :--- | :--- | | | |
| :--- | :--- |
| | Composite Runoff Coefficient |
| | 2-year Composite Runoff Coefficient (Cf=1.00) |
| | 10-year Composite Runoff Coefficient (Cf=1.00) |
| | 100-year Composite Runoff Coefficient (Cf=1.25) |
| $\mathbf{0 . 6 0}$ | |

Overland Slope (percent)	5
Overland Length (ft)	83
Channelized Roughness Coefficient (manning's n)	0.15
Hydraulic Radius (feet)	0
Longitudinal Slope (feet/feet)	0
Length of channel (feet)	0
Channelized Velocity (ft/sec)	0.00

		2-year	10-year	100-year
	Time of Concentration (Tc=Ti+Tt)	4.98	4.98	3.48
	Overland Flow Time of Concentration (minutes)	4.97	4.97	3.48
	Channelized Flow Time of Concentration (minutes)	0.00	0.00	0.00
	Maximum Tc Allowed (L/180 +10)	10.46	10.46	10.46
	Total Time of Concentration*	$\mathbf{5 . 0 0}$	$\mathbf{5 . 0 0}$	$\mathbf{5 . 0 0}$
	*If Tc is less than 5 minutes, Tc is equal to 5 minutes			
	Intensity (in/hr) Table 3.4-1	$\mathbf{2 . 8 5}$	$\mathbf{4 . 8 7}$	$\mathbf{9 . 9 5}$

Flow Rate (cfs)	0.51	0.88	2.24
$\mathrm{Q}=\operatorname{ciA}$			

	Development \%1 Actual Design	$\mathbf{6 0 \%}$
	Composite Runoff Coefficient	$\mathbf{0 . 6 6}$
	2-year Composite Runoff Coefficient (Cf=1.00)	$\mathbf{0 . 6 6}$
	10-year Composite Runoff Coefficient (Cf=1.00)	$\mathbf{0 . 6 6}$
	100-year Composite Runoff Coefficient (Cf=1.25)	$\mathbf{0 . 8 3}$

Overland Slope (percent)	2
Overland Length (ft)	20
Channelized Roughness Coefficient (manning's n)	0.15
Hydraulic Radius (feet)	0
Longitudinal Slope (feet/feet)	0
Length of channel (feet)	0
Channelized Velocity (ft/sec)	0.00

		2-year	10-year	100-year
	Time of Concentration (Tc=Ti+Tt)	2.90	2.90	1.80
	Overland Flow Time of Concentration (minutes)	2.90	2.90	1.80
	Channelized Flow Time of Concentration (minutes)	0.00	0.00	0.00
	Maximum Tc Allowed (L/180 +10)	10.11	10.11	10.11
	Total Time of Concentration*	$\mathbf{5 . 0 0}$	$\mathbf{5 . 0 0}$	$\mathbf{5 . 0 0}$
	*If Tc is less than 5 minutes, Tc is equal to 5 minutes			
	Intensity (in/hr) Table 3.4-1	$\mathbf{2 . 8 5}$	$\mathbf{4 . 8 7}$	$\mathbf{9 . 9 5}$

Flow Rate (cfs)	0.28	0.48	1.22
$\mathrm{Q}=\mathrm{ciA}$			

APPENDIX B

Hydraulic Computations

TRUEGRID ${ }^{\circledR}$ PRO Plus Manufacturer's Product Specification Sheet

Dimensions:	$24^{\prime \prime} \times 24^{\prime \prime} \times 1.8^{\prime \prime}(4 \mathrm{sq} / \mathrm{ft})$
Pre-Assembled:	$16 \mathrm{sq} / \mathrm{ft}$ per layer (4' $\times 4^{\prime}$ sheet) (4 grids per layer)
Cell Width:	$3-3 / 16^{\prime \prime}$
Weight:	5.22 lbs
Permeability:	100% w/clean, uniform stone
Product Porosity:	90% open
Compressive strength:	Over 8000 psi filled
Material:	Recycled High Density Polyethylene (100\% post-consumer)
Color:	Black with UV Stabilizer
Temperature Range:	Dimensionally Stable for -58F to 194F
Moisture Absorption:	$.01 \%$
Environmental Compatibility:	Nontoxic, harmless to plants, animals, and microorganisms. Inert material, groundwater neutral
Installation Speed:	1000 sq/ft per man hour

Other features of TRUEGRID

- Highly resistant to oils, gasoline, acids, salt, ammonia, and alcohol
- May be saw cut
- Patented design yields ultimate hoop strength
- Circular elements provide multi-directional crush and shear strength
- Flexible links allow expansion and contraction depending on environmental conditions
- Built in X-Anchors allows weight of filler to hold grid down without any extra staking
- Interlocking connectors

True to your project. True to the environment.

Ground Preparation: Depends upon site condition and local conditions.
Suggested Sub-base: $3 / 4^{\prime \prime}-1^{\prime \prime}$ diameter clean/washed, angular gravel.
Depth of this layer should be a minimum of 6 "- $8^{\prime \prime}$. Deeper for heavier loads. For additional drainage, increase depth of sub-base.
Class 2 road base (crushed concrete) is also a typical sub-base material. Gravel/sandy soil mix (60/40) is also common for grass fill applications. Level sub-base before laying TrueGrid.

Layout and snap together pre-assembled sheets. (4 pcs per layer $=16 \mathrm{sq} / \mathrm{ft}$) If body weight does not level the grids, use plate vibrator or heavy cylinder to level.

Backfill: Any angular or round medium may be used. Fill cells with filler of choice. $5 / 8$ " or $3 / 4$ " diameter typical.

- TRUEGRID may be cut on site	Angle grinder, circular saw, compass saw, or
- Pre-cutting is not required	handsaw are all options for cutting TRUEGRID.

Delivery:

- Pallet content:
- Pallet dimensions:
- Approximate pallet weight:
- Truckload:
$800 \mathrm{sq} / \mathrm{ft}=50$ layers per pallet $=200 \mathrm{pcs}$
$48^{\prime \prime} \times 48^{\prime \prime} \times 95^{\prime \prime}$
1,050 lbs
24 pallets or $19,200 \mathrm{sq} / \mathrm{ft}$

For more info on TRUEGRID Please visit our website:
www.truegridpaver.com

APPENDIX C

24 x 36 Maps

STODGY BREWING CO., LLC

BEING A PART OF THE SE $1 / 4$ OF THE NW $1 / 4$
SECTION 10, TOWNSHIP 7 NORTH, RANGE 69 WEST, OF THE 6TH P.M., LARIMER COUNTY, COLORADO

VICINITY MAP

City of Fort Collins, Colorado UTILITY PLAN APPROVAL	
Approver : Caty Eng	pate
Criecked 日Y: Water \& Wastenater Uutily	Date
KED Bx: Stornveler Ouiliy	Date
${ }^{\text {chiccered }}$ By ${ }^{\text {a }}$ Parks \& Recreation	Date
Curecke by: Traffic Engineer	Date
Envirommental Planner	Date

STANDARD DETALS FOR DRAINAGE UNDER SIDEWALK

(GR2) TRUE GRID DETAILS

(CWA)

 CWA-1. CONCRETE WASHOUT AREA

解
esir
5.

GRADING DETAILS

APPENDIX D

LID Treatment Exhibit

SALUD

OVERALL DEVELOPMENT PLAN

LEGAL DESCRIPTION

 Mind
 Nond рамен:

 pancelli:

 pancel w:
 $= \pm=2=$ = waw

LAND USES*

OWNER'S CERTIFICATION

OWNER (SINEED)
THE Foregong nstrument was Acknowneoged before me this
${ }^{\text {BY }}{ }^{\text {(RRNT TANE) }}$
As

$\underset{(\text { SEAL) }}{\text { Notarr }}$

PLANNING \& ZONING CERTIFICATE

${ }_{20}{ }^{2} \mathbf{T H E C I T Y}$ OF Fon

ALTERNATIVE COMPLIANCE
LAND USE CODE

COVER SHEET

SALUD FAMILY HEALTH CENTER

Project Development Plan

PLANNING CERTIFICATE

birecter Sgnawu

OWNER'S CERTIFICATION

Sheet List Table
SHEET NUMBER
SHEET TITLE
COVER SHEET
natural haitat buffer zones
tree mitcation
Lanoscane plan
anoscape detalls

LOCATION MAP ZONING MAP

LEGAL DESCRIPTION

LAND USE CHART

