
Compost Production and Utilization

Addy Elliott Department of Soil and Crop Sciences Colorado State University Adriane.Elliott@ColoState.edu

Whether you have one horse...

many cows,

I was tired of my goaty, so I decided to grow a moustache...

a few goats,

or food waste...

Methods of Composting

Active windrows/bins: This presentation

Passive windrows

– Requires passive aeration technology

Worms: Online Fact Sheet (vermicomposting)

- Building a Worm Bin: <u>http://www.ext.colostate.edu/sam/vermicompost.pdf</u>
- CSU Extension Compost Site: <u>http://www.ext.colostate.edu/sam/compost.html</u>
- Worm Digest: <u>http://www.wormdigest.org/</u>

What Are the Benefits of Composting?

- Reduces volume of material by approx. 30%
 Minimizes pathogen, weed, odor, and insect problems
- Stabilizes nitrogen and phosphorus compounds which minimizes water pollution
- Produces a useful and marketable soil amendment
- Sequesters carbon into a stable form that can be put back into the soil (instead of in a landfill)

What is Composting?

Composting is the

- managed,
- biological,
- oxidation process that converts
- heterogeneous organic matter into a more
- homogeneous, fine-particle humus-like material.

from <u>FIELD GUIDE TO ON-FARM COMPOSTING</u> (Rodale Institute) <u>http://www.css.cornell.edu/compost/OnFarmHandbook/onfarm_TOC.html</u>

MANAGED: what YOU do!

Provide carbon (C) and nitrogen (N) in 30:I ratio

Provide oxygen for oxidation process at 5-50%

Provide water to keep moisture at 50%

Estimated Carbon-to-Nitrogen Ratios	
Browns = High Carbon	C:N
Ashes, wood	25:1
Cardboard, shredded	350:1
Corn stalks	75:1
Fruit waste	35:1
Leaves	60:1
Newspaper, shredded	175:1
Peanut shells	35:1
Pine needles	80:1
Sawdust	325:1
Straw	75:1
Wood chips	400:1
	400:1 <mark>C:N</mark>
Wood chips	
Wood chips Greens = High Nitrogen	C:N
Wood chips <mark>Greens = High Nitrogen</mark> Alfalfa	<mark>C:N</mark> 12:1
Wood chips Greens = High Nitrogen Alfalfa Clover	<mark>C:N</mark> 12:1 23:1
Wood chips Greens = High Nitrogen Alfalfa Clover Coffee grounds	C:N 12:1 23:1 20:1
Wood chips Greens = High Nitrogen Alfalfa Clover Coffee grounds Food waste	C:N 12:1 23:1 20:1 20:1
Wood chips Greens = High Nitrogen Alfalfa Clover Coffee grounds Food waste Garden waste	C:N 12:1 23:1 20:1 20:1 30:1
Wood chips Greens = High Nitrogen Alfalfa Clover Coffee grounds Food waste Garden waste Grass clippings Hay Manures	C:N 12:1 23:1 20:1 20:1 30:1 20:1 25:1 15:1
Wood chips Greens = High Nitrogen Alfalfa Clover Coffee grounds Food waste Garden waste Grass clippings Hay Manures Seaweed	C:N 12:1 23:1 20:1 20:1 30:1 20:1 20:1 25:1
Wood chips Greens = High Nitrogen Alfalfa Clover Coffee grounds Food waste Garden waste Grass clippings Hay Manures	C:N 12:1 23:1 20:1 20:1 30:1 20:1 25:1 15:1

BIOLOGICAL: what microorganisms (MO's) do

Many species of bacteria and fungi metabolize the C and N to grow and multiply, using oxygen and water in the process

Composting is farming MO's, which are present in the soil!

OXIDATION

"In the presence of air"

Used by MO in respiration

Oxygen is in pore space in compost windrow

Use bulking material and turn to maintain pore space for air

A variety of initial materials creates lots of air pockets, or pore space.

Heterogeneous Organic Matter/ Feedstocks

Kitchen scraps
Bedding
Waste hay
Spoiled feed or grain
Leaves and grass clippings
Horse manure

Homogeneous, Fine-particle Humus-like Material

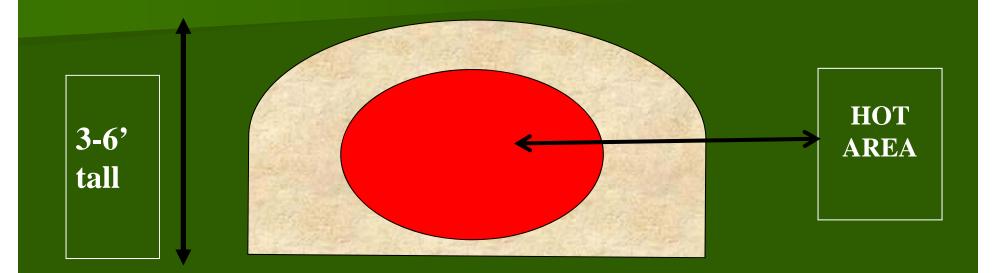
This is the final product that you are aiming for at the end of a successful composting process.

How to Make Compost!

For any scale that you choose

Choose a site

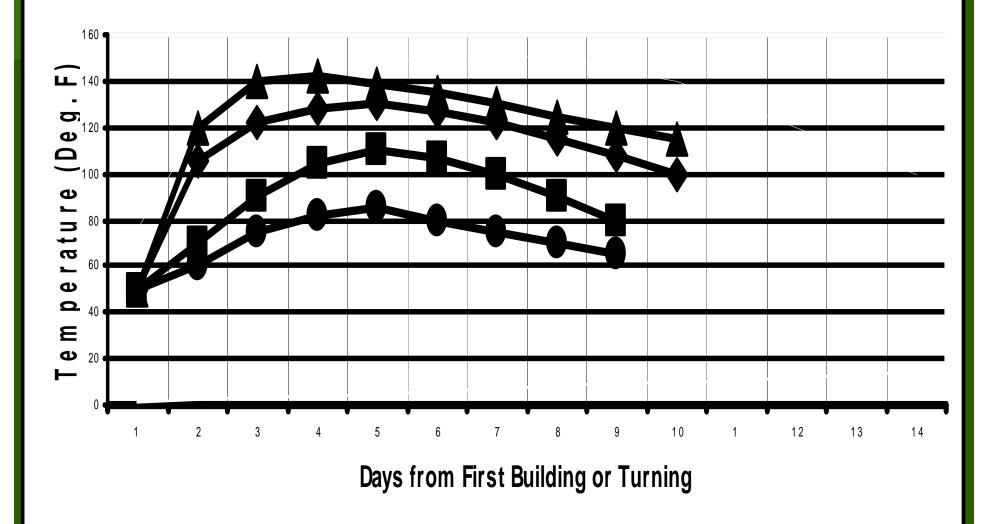
Mowed area, smooth, slightly sloping
Near feedstock source
Near water tap and at least 100 ft. from "waters of the state" or wells
Control run-on and run-off


Building the Pile

Layer nitrogen-rich feedstock loosely with bulking material, adding water to 50%
Manage the batch or continuous pile a little differently.

What happens inside the pile?

Height and width depend on your feedstock volumes and equipment


Monitor the Windrow

- Check temperature with compost thermometer (<u>www.reotemp.com</u>)
- Heat is an indicator of biological activity
 - GOAL: 130+°F for at least 15 days where pile was turned at least 3 times during this heat cycle
- Graph or observe heating cycle: increase then decrease (future slide illustrates this)
- After decrease, turn to aerate and add water, use graph to help with timing

Even in winter composting organisms metabolize enough to produce substantial heat.

Relationship of Time and Temperature to Compost Turning

Continued Monitoring...

After turning, monitor heat cycle again

Turn when temperature decreases

Check moisture and add if necessary

Repeat turnings until temperature ceases to rise (about 4-5 turning cycles)

Curing Phase

 When temperature curve flattens, mesophyllic (mid-temperature) MO's take over to finish process

Keep windrow moist, less than 50%

Cure for I-2 months

Why cure?

Assures highest quality product pH shifts to neutral Soil MO's re-colonize compost, impart disease suppressing qualities to compost If too much C left, use of this compost as a soil amendment may cause a temporary N deficiency, just the opposite of what you want! Makes compost optimum for plant growth

When is my compost done?

- After heating cycles stop
- After curing
- Check for homogenous, fine-particle humus-like appearance (unfinished material might need to be screened out and reintroduced to another pile)
- Earthy smell (Actinomyces)

 Maturity tests: Solvita test (becoming recognized by highway departments), and others, experience!
 – www.woodsend.org

To Assure Quality....

Keep meat/cheese/bones out of your compost bin

Know where your feedstocks came from

- Antibiotics? De-wormer? A mature compost will be antibiotic free
- Herbicides? Some broadleaf herbicides (chlopyralid) do not break down in the composting process and may deter growth of your broadleaf garden plants
- Heavy metals? This is typically not an issue in compost unless you are composting biosolids

To Assure Quality...

Know that your compost is mature

- Maturity = low microbial activity = fully composted
- You will avoid ammonia burn in your plants
- Nitrogen in your garden soil will not be immobilized by unfinished compost and 'rob' your plants of nutrients
- Pathogens (E .coli/Salmonella) are destroyed during a well managed composting process
- Test your compost!!! And your soil!!!
 - This will help you determine how much compost your soil needs. More is not always better!

Happy Composting!

QUESTIONS?