
Backyard Composting: Avoiding Toxic Compost

Addy Elliott

Department of Soil and Crop Sciences Colorado State University Adriane.Elliott@ColoState.edu

Whether you have one

many cows,

or food waste...

a few goats,

so I decided to grow a moustache...

I was tired of my goaty,

Organic matter is a resource!! Don't waste it!

Methods of Composting

Active windrows/bins: This presentation

Passive windrows

– Requires passive aeration technology

Worms: Online Fact Sheet (vermicomposting)

- http://www.ext.colostate.edu/PUBS/LIVESTK/01224.pdf
- <u>http://www.ext.colostate.edu/PUBS/LIVESTK/01225.pdf</u>
- http://www.ext.colostate.edu/PUBS/LIVESTK/01226.pdf

What Are the Benefits of Composting?

- Reduces volume of material by approx. 30%
- Minimizes pathogen, weed, odor, and insect problems
- Stabilizes nitrogen and phosphorus compounds which minimizes water pollution
- Produces a useful and marketable soil amendment
- Sequesters carbon into a stable form that can be put back into the soil (instead of in a landfill)

What is Composting?

Composting is the

- managed,
- biological,
- oxidation process that converts
- heterogeneous organic matter into a more
- homogeneous, fine-particle humus-like material.

from <u>FIELD GUIDE TO ON-FARM COMPOSTING</u> (Rodale Institute) <u>http://www.css.cornell.edu/compost/OnFarmHandbook/onfarm TOC.html</u>

MANAGED: what YOU do!

Provide carbon (C) and nitrogen (N) in 30:1 ratio

Provide oxygen for oxidation process at 5-50%

Provide water to keep moisture at 50%

BIOLOGICAL: what microorganisms (MO's) do

Many species of bacteria and fungi metabolize the C and N to grow and multiply, using oxygen and water in the process

Composting is farming MO's, which are present in the soil!

OXIDATION

"In the presence of air"

Used by MO in respiration

Oxygen is in pore space in compost windrow

Use bulking material and turn to maintain pore space for air

A variety of initial materials creates lots of air pockets, or pore space.

Heterogeneous Organic Matter

Kitchen scraps
Bedding
Waste hay
Spoiled feed or grain
Leaves and grass clippings
Horse manure

Homogeneous, Fine-particle Humuslike Material

This is the final product that you are aiming for at the end of a successful composting process.

How to Make Compost!

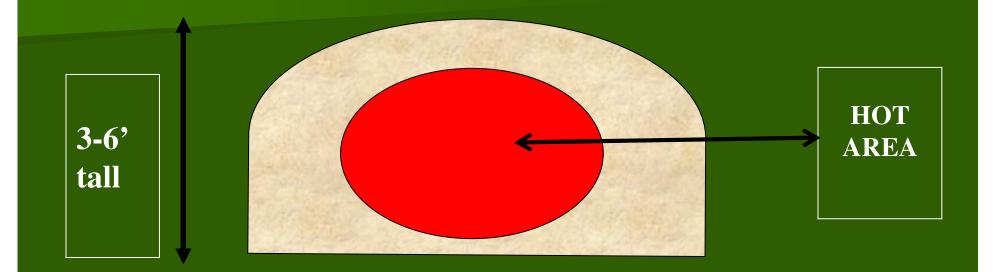
For any scale that you choose

Choose a site

Mowed area, smooth, slightly sloping
Near feedstock source
Near water tap and at least 100 ft. from "waters of the state" or wells
Control run-on and run-off

This is a bad location for manure or compost. Keep them 100 feet away from open water or wells.

Building the Pile

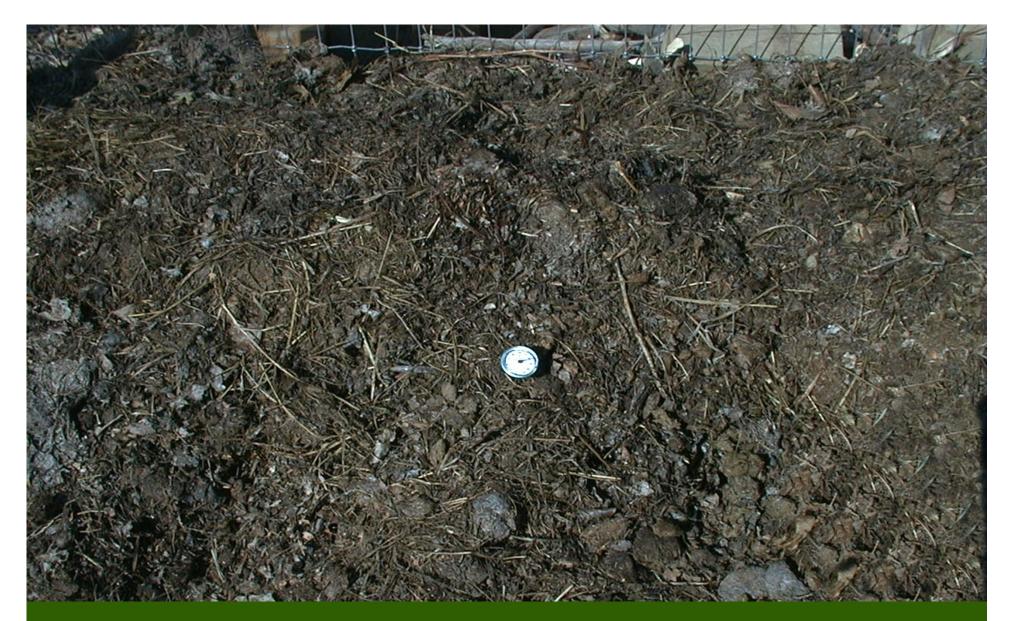

Layer manure loosely with bulking material, adding water to 50%

Add new material at one end if you want to build a windrow instead of a pile

What happens inside the pile?

Height and width depend on your feedstock volumes and equipment

END VIEW OF COMPOST WINDROW/PILE

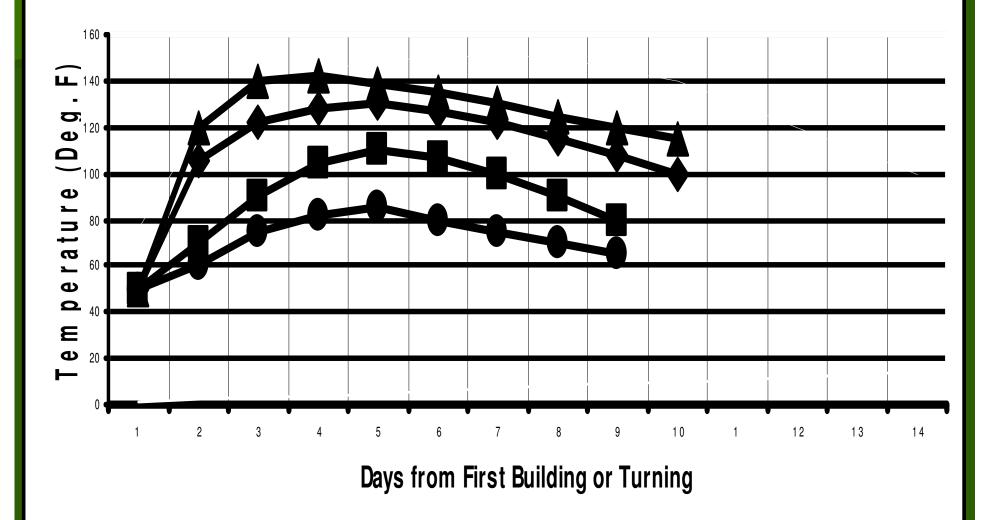

Monitor the Windrow

Check temperature with compost thermometer (<u>www.reotemp.com</u>) or your hand

Heat is an indicator of biological activity

Graph heating cycle: increase then decrease

After decrease, turn to aerate and add water, use graph to help with timing



Insert a thermometer into center of pile to monitor temperature, which is an indication of biological activity.

Even in winter composting organisms metabolize enough to produce substantial heat.

Relationship of Time and Temperature to Compost Turning

Continued Monitoring...

- After turning, monitor heat cycle again
- Turn when temperature decreases
- Check moisture and add if necessary
- Repeat turnings until temperature ceases to rise (about 4-5 turning cycles)

Curing Phase

When temperature curve flattens, mesophilic (mid-temperature) MO's take over to finish process

Keep windrow moist, less the

Cure for 1-2 months

Why cure?

Assures highest quality product pH shifts to neutral Soil MO's re-colonize compost, impart disease suppressing qualities to compost If too much C left, use of this compost as a soil amendment may cause a temporary N deficiency, just the opposite of what you want! Makes compost optimum for plant growth

When is my compost done?

- After heating cycles stop
- After curing
- Check for homogenous, fine-particled humuslike appearance
- Earthy smell

Maturity tests: Solvita test (becoming recognized by highway departments), and others, experience!

– www.woodsend.org

Avoiding Toxic Compost I

Never add meat/cheese/bones to a compost bin

- This will avoid the colonization of maggots in your pile
- Know where your feedstocks came from
 - Antibiotics? De-wormer? A mature compost will be antibiotic free
 - Herbicides? Some broadleaf herbicides (chlopyralid) do not break down in the composting process and may deter growth of your broadleaf garden plants
 - Heavy metals? This is typically not an issue in compost unless you are composting biosolids

Avoiding Toxic Compost II

Assure that your compost is mature

- Maturity = low microbial activity = fully composted
- This will avoid ammonia burn in your plants
- Nitrogen in your garden soil will not be immobilized by unfinished compost and 'rob' your plants of nutrients
- Pathogens (E .coli/Salmonella) are destroyed during a well managed composting process

Test your compost!!! And your soil!!!

 This will help you determine how much compost your soil needs. More is not always better!

Now what??

- Useful soil amendment
- Contains N,P, K, micronutrients, and live microorganisms, amounts vary
- N is released slowly
- Topdressing with ½-1 inch is usually OK
- Send compost sample to soil lab <u>with</u> soil sample to correctly determine how much to apply

Troubleshooting

No heating

Smells: rotten smell or like ammonia

- Etc, Etc!
- See troubleshooting handout from <u>On-Farm</u> <u>Composting Handbook</u>,

http://www.css.cornell.edu/compost/OnFarmHandbook/onfarm_TOC.html

Contact: Addy Elliott – 970-491-6984, Adriane.Elliott@ColoState.edu

QUESTIONS?

Happy Composting!

